Advertisement

Automatic domain modeling for human–robot interaction

  • Srđan Ž. Savić
  • Milan GnjatovićEmail author
  • Darko Stefanović
  • Bojan Lalić
  • Nemanja Maček
Original Research Paper
  • 43 Downloads

Abstract

This paper introduces an approach to automatic domain modeling for human–robot interaction. The proposed approach is symbolic and intended for semantically unconstrained task-oriented human–robot interaction domains. At the specification level, it is cognitively inspired, addressing selected cognitive mechanisms of the human memory system (e.g., integration, semantic categorization, associative learning, etc.) that are relevant for natural language human–robot interaction. We discuss a corpus-based validation of the introduced approach and report on its particular implementation within the conversational agent integrated with a human-like robot.

Keywords

Human–robot interaction Domain modeling Cognitive mechanisms Focus tree Robot MARKO 

Notes

Acknowledgements

The presented study was funded by the Ministry of Education, Science and Technological Development of the Republic of Serbia (research Grants III44008 and TR32035), and as part of the project “Collaborative strategies of heterogeneous robot activity at solving agriculture missions controlled via intuitive human–robot interfaces” (ID 99), sponsored within the framework of the ERA.Net RUS Plus program. The responsibility for the content of this article lies with the authors.

References

  1. 1.
    Anderson JR (2007) How can the human mind occur in the physical universe?. Oxford University Press, OxfordCrossRefGoogle Scholar
  2. 2.
    Anderson JR (1996) ACT: a simple theory of complex cognition. Am Psychol 51(4):355–365MathSciNetCrossRefGoogle Scholar
  3. 3.
    Anderson JR (1985) Cognitive psychology and its implications, 2nd edn. Freeman, New YorkGoogle Scholar
  4. 4.
    Anderson JR (1983) The architecture of cognition. Harvard University Press, CambridgeGoogle Scholar
  5. 5.
    Anderson JR, Bower GH (1973) Human associative memory. Wiley, New YorkGoogle Scholar
  6. 6.
    Bothell D (2007) ACT-R 6.0 Reference Manual. From the ACT-R Web site: http://act-r.psy.cmu.edu/actr7.x/reference-manual.pdf. Accessed 06 Jun 2019
  7. 7.
    Collins AM, Loftus EF (1975) A spreading activation theory of semantic memory. Psychol Rev 82(6):407–428CrossRefGoogle Scholar
  8. 8.
    Di Nuovo A, Broz F, Wang N, Belpaeme T, Cangelosi A, Jones R, Esposito R, Cavallo F, Dario P (2018) The multi-modal interface of Robot-Era multi-robot services tailored for the elderly. Intell Serv Robot 11(1):109–126CrossRefGoogle Scholar
  9. 9.
    Fillmore CJ (1968) The case for case. In: Bach E, Harms R (eds) Universals in linguistic theory. Holt, Rinehart, and Winston, New York, NY, pp 1–89Google Scholar
  10. 10.
    Firth J (1968) A synopsis of linguistic theory 1930–1955. Studies in linguistic analysis. In: Palmer FR (ed), Selected Papers of J. R. Firth (1952–59). Longmans, London, pp 168–205Google Scholar
  11. 11.
    Gnjatović M (2014) Therapist-centered design of a robot’s dialogue behavior. Cogn Comput 6(4):775–788CrossRefGoogle Scholar
  12. 12.
    Gnjatović M, Delić V (2014) Cognitively-inspired representational approach to meaning in machine dialogue. Knowl Based Syst 71:25–33CrossRefGoogle Scholar
  13. 13.
    Gnjatović M, Delić V (2013) Electrophysiologically-inspired evaluation of dialogue act complexity. In: Proceedings of the 4th IEEE International Conference on Cognitive Infocommunications, CogInfoCom, Budapest, Hungary, pp 167–72 Google Scholar
  14. 14.
    Gnjatović M, Janev M, Delić V (2012) Focus tree: modeling attentional information in task-oriented human–machine interaction. Appl Intell 37(3):305–320CrossRefGoogle Scholar
  15. 15.
    Gnjatović M, Rösner D (2010) Inducing genuine emotions in simulated speech-based human–machine interaction: the NIMITEK corpus. IEEE Trans Affect Comput 1(2):132–144CrossRefGoogle Scholar
  16. 16.
    Halliday MAK (2004) An introduction to functional grammar, 3rd edn. Hodder Arnold, LondonGoogle Scholar
  17. 17.
    Harris Z (1954) Distributional structure. Word 10(23):146–162CrossRefGoogle Scholar
  18. 18.
    Hernández-García D, Monje C, Balaguer C (2016) A use case of an adaptive cognitive architecture for the operation of humanoid robots in real environments. Int J Adv Robot Syst 14(1):1–15 Google Scholar
  19. 19.
    Johnson TR, Wang H, Zhang J, Wang Y (2002) A model of spatio-temporal coding of memory for multidimensional stimuli. In: Proceedings of the 24th annual meeting of the cognitive science society, Fairfax, VA: AugustGoogle Scholar
  20. 20.
    Jokinen K, McTear M (2009) Spoken Dialogue Systems. Synthesis lectures on human language technologies. Morgan and Claypool vol 2, No. 1, pp 1–151CrossRefGoogle Scholar
  21. 21.
    Jones MN, Mewhort DJK (2007) Representing word meaning and order information in a composite holographic lexicon. Psychol Rev 114(1):1–37CrossRefGoogle Scholar
  22. 22.
    Jurafsky D, Martin JH (2009) Speech and language processing: an introduction to natural language processing, computational linguistics, and speech recognition, 2nd edn. Prentice-Hall, Upper Saddle RiverGoogle Scholar
  23. 23.
    Landauer T, Dumais S (1997) A solution to Plato’s problem: the latent semantic analysis theory of the acquisition, induction, and representation of knowledge. Psychol Rev 104(2):211–240CrossRefGoogle Scholar
  24. 24.
    Lund K, Burgess C (1996) Producing high-dimensional semantic spaces from lexical co-occurrence. Behav Res Methods Instrum Comput 28(2):203–208CrossRefGoogle Scholar
  25. 25.
    Mišković D, Gnjatović M, Štrbac P, Trenkić B, Nikša J, Delić V (2017) Hybrid methodological approach to context-dependent speech recognition. Int J Adv Robot Syst 14(1):1–12CrossRefGoogle Scholar
  26. 26.
    Pineda LA, Rodríguez A, Fuentes G, Rascón C, Meza I (2017) A light non-monotonic knowledge-base for service robots. Intell Serv Robot 10(3):159–171CrossRefGoogle Scholar
  27. 27.
    Pylyshyn Z (1973) What the mind’s eye tells the mind’s brain: a critique of mental imagery. Psychol Bull 80(1):1–24CrossRefGoogle Scholar
  28. 28.
    Quillian MR (1969) The teachable language comprehender: a simulation program and theory of language. Commun ACM 12(8):459–476CrossRefGoogle Scholar
  29. 29.
    Quillian MR (1968) Semantic memory. In: Minsky MU (ed) Semantic information processing. MIT Press, CambridgeGoogle Scholar
  30. 30.
    Rogers TT, McClelland JL (2014) Parallel distributed processing at 25: further explorations in the microstructure of cognition. Cogn Sci 38(6):1024–1077CrossRefGoogle Scholar
  31. 31.
    Rumelhart DE, McClelland JL (1986) Parallel distributed processing, explorations in the microstructure of cognition. Volume 1: foundations. MIT Press, CambridgeGoogle Scholar
  32. 32.
    Rutledge-Taylor M, Lebiere C, Thomson R, Staszewski J, Anderson JR (2012) A comparison of rule-based versus exemplar-based categorization using the ACT-R architecture. In: Proceedings of the 21st annual behavior representation in modeling and simulation conference, pp 44–50Google Scholar
  33. 33.
    Savić S, Gnjatović M, Mišković D, Tasevski J, Maček N (2017) Cognitively-inspired symbolic framework for knowledge representation. In: Proceedings of the 8th IEEE international conference on cognitive Infocommunications (CogInfoCom), Debrecen, Hungary, September 2017, pp 315–320Google Scholar
  34. 34.
    Sternberg RJ, Sternberg K (2012) Cognitive psychology, 6th edn. Cengage Learning, WadsworthGoogle Scholar
  35. 35.
    Stowell T (1981) Origins of phrase structure, Ph.D. Thesis. Department of Linguistics and Philosophy, Massachusetts Institute of TechnologyGoogle Scholar
  36. 36.
    Tasevski J, Gnjatović M, Borovac B (2018) Assessing the Children’s receptivity to the robot MARKO. Acta Polytech Hung 15(5):47–66Google Scholar
  37. 37.
    Trafton G, Hiatt L, Harrison A, Tamborello F, Khemlani S, Schultz A (2013) ACT-R/E: an embodied cognitive architecture for human–robot interaction. J Hum Robot Interact 2(1):30–55CrossRefGoogle Scholar
  38. 38.
    Thomson R, Pyke A, Trafton JG, Hiatt LM (2015) An account of associative learning in memory recall. In: Proceedings of the 37th annual conference of the cognitive science society. Cognitive Science Society. Austin, pp 2386–2391Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of Technical SciencesUniversity of Novi SadNovi SadSerbia
  2. 2.School of Electrical and Computer Engineering of Applied StudiesBelgradeSerbia
  3. 3.Faculty of Computer ScienceMegatrend UniversityNew BelgradeSerbia

Personalised recommendations