Optimal motion planning and stopping test for 3-D object reconstruction

Abstract

In this work, two aspects of motion planning for object reconstruction are investigated. First, the effect of using a sampling-based optimal motion planning technique to move a mobile manipulator robot with 8 degrees of freedom, during the reconstruction process, in terms of several performance criteria is studied. Based on those criteria, the results of the reconstruction task using rapidly exploring random tree (RRT) approaches are compared, more specifically RRT* smart versus RRT* versus standard RRT. Second, the problem of defining a convenient stopping probabilistic test to terminate the reconstruction process is addressed. Based on our results, it is concluded that the use of a RRT* improves the measured performance criteria compared with a standard RRT. The simulation experiments show that the proposed stopping test is adequate. It stops the reconstruction process when all the portions of object that are possible to be seen have been covered with the field of view of the sensor.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

References

  1. 1.

    Chen S, Li Y, Kwok NM (2011) Active vision in robotic systems: a survey of recent developments. Int J Rob Res 30(11):1343–1377

    Article  Google Scholar 

  2. 2.

    Cieslewski T, Kaufmann E, Scaramuzza D. (2017) Rapid exploration with multi-rotors: a frontier selection method for high speed flight. In: Proc. IEEE/RSJ int. conf. on intelligent robots and systems

  3. 3.

    Delmerico J, Isler S, Sabzevari R et al (2018) A comparison of volumetric information gain metrics for active 3D object reconstruction. Auton Robots 42:197. https://doi.org/10.1007/s10514-017-9634-0

    Article  Google Scholar 

  4. 4.

    Hornung A, Wurm KM, Bennewitz M, Stachniss C, Burgard W (2013) Octomap: an efficient probabilistic 3d mapping framework based on octrees. Auton Robots 34(3):189–206

    Article  Google Scholar 

  5. 5.

    Isler S, Sabzevari R, Delmerico J, Scaramuzza D (2016) An information gain formulation for active volumetric 3D reconstruction. In: Proc. IEEE int. conf. on robotics and automation, pp 3477–3484

  6. 6.

    Karaman S, Frazzoli E (2011) Sampling-based algorithms for optimal motion planning. Int J Rob Res 30(7):846–894

    Article  MATH  Google Scholar 

  7. 7.

    Kavraki LE, Svestka P, Latombe J-C, Overmars MH (1996) Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Trans Rob Autom 12(4):566–580

    Article  Google Scholar 

  8. 8.

    Khalfaoui S, Seulin R, Fougerolle YD, Fofi D (2013) An efficient method for fully automatic 3d digitization of unknown objects. Comput Ind 64(9):1152–1160

    Article  Google Scholar 

  9. 9.

    Kriegel S, Rink C, Bodenmller T, Suppa M (2013) Efficient next-best-scan planning for autonomous 3d surface reconstruction of unknown objects. J Real-Time Image Process 1–21

  10. 10.

    LaValle SM, Kuffner JJ (2001) Randomized kinodynamic planning. Int J Rob Res 20(5):378–400

    Article  Google Scholar 

  11. 11.

    Lozano Albalate MT, Devy M, Sanchiz Marto JM (2002) Perception planning for an exploration task of a 3D environment. In: Proc. int. conf. on pattern recognition, pp 704–707

  12. 12.

    Nasir J, Islam F, Malik U, Ayaz Y, Hasan O, Khan M, Muhammad MS (2013) RRT*-SMART: a rapid convergence implementation of RRT*. Int J Adv Rob Syst 10(7)

  13. 13.

    Noreen I, Khan A, Habib Z (2016) A comparison of RRT, RRT* and RRT*—smart path planning algorithms. Int J Comput Sci Netw Secur 16(10)

  14. 14.

    Potthast C, Sukhatme G (2014) A probabilistic framework for next best view estimation in a cluttered environment. J Vis Commun Image Represent 25(1):148–164

    Article  Google Scholar 

  15. 15.

    Sarmiento A, Murrieta-Cid R, Hutchinson S (2005) A sample-based convex cover for rapidly finding an object in a 3-D environment. In: Proc. IEEE int. conf. on robotics and automation, pp 3497–3502

  16. 16.

    Scott WR, Roth G, Rivest JF (2003) View planning for automated three-dimensional object reconstruction and inspection. ACM Comput Surv (CSUR) 35(1):64–96

    Article  Google Scholar 

  17. 17.

    Song S, Jo S (2017) Online inspection path planning for autonomous 3d modeling using a micro-aerial vehicle. In: IEEE international conference on robotics and automation, pp 6217–6224, 29 May–3 June, Singapore, Singapore

  18. 18.

    Song S, Jo S (2018) Surface-based exploration for autonomous 3D modeling. In: IEEE international conference on robotics and automation, Brisbane, Australia

  19. 19.

    Srinivasan Ramanagopal M, Nguyen APV, Ny J Le (2018) A motion planning strategy for the active vision-based mapping of ground-level structures. IEEE Trans Autom Sci Eng 15(1):356–368

    Article  Google Scholar 

  20. 20.

    Torabi L, Gupta K (2012) An autonomous 9-dof mobile-manipulator system for in situ 3d object modeling. In: Proc. IEEE/RSJ int. conf. on intelligent robots and systems, pp 4540–4541

  21. 21.

    Torabi L, Gupta K (2012) An autonomous six-dof eye-in-hand system for in situ 3d object modeling. Int J Rob Res 31(1):82–100

    Article  Google Scholar 

  22. 22.

    Vasquez-Gomez JI, Sucar LE, Murrieta-Cid R (2014) View planning for 3D object reconstruction with a mobile manipulator robot. In: Proc. IEEE/RSJ int. conf. on intelligent robots and systems, pp 4227–4233

  23. 23.

    Vasquez-Gomez JI, Sucar LE, Murrieta-Cid R (2017) View/state planning for three-dimensional object reconstruction under uncertainty. Auton Robots 41(1):89–109

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rafael Murrieta-Cid.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was partially funded by CONACYT project 220796.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mp4 8390 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yervilla-Herrera, H., Vasquez-Gomez, J.I., Murrieta-Cid, R. et al. Optimal motion planning and stopping test for 3-D object reconstruction. Intel Serv Robotics 12, 103–123 (2019). https://doi.org/10.1007/s11370-018-0264-y

Download citation

Keywords

  • Optimal motion planning
  • Object reconstruction
  • Termination test