Advertisement

Neural network-based approaches for mobile robot navigation in static and moving obstacles environments

  • Ngangbam Herojit Singh
  • Khelchandra Thongam
Original Research Paper
  • 86 Downloads

Abstract

Mobile robots can travel by acquiring the information using sensor-actuator control techniques from surrounding and perform several tasks. Due to the ability of traversing, mobile robots are used in different application for different places. In the field of robotic research, robot navigation is the fundamental problem and it is easier in static environment than dynamic environment. This paper presents a new method for generating a collision-free, near-optimal path and speed for a mobile robot in a dynamic environment containing moving and static obstacles using artificial neural network. For each robot motion, the workspace is divided into five equal segments. The multilayer perceptron (MLP) neural network is used to choose a collision-free segment and also controls the speed of the robot for each motion. Simulation results show that the method is efficient and gives near-optimal path reaching the target position of the mobile robot.

Keywords

Mobile robot Path planning Dynamic environment Artificial neural network Obstacle avoidance Collision-free path Supervised learning Multilayer perceptron 

Notes

References

  1. 1.
    Algabri M, Mathkour H, Ramdane H, Alsulaiman M (2015) Comparative study of soft computing techniques for mobile robot navigation in an unknown environment. Comput Hum Behav 50:42–56CrossRefGoogle Scholar
  2. 2.
    An MZ, Zeng GH, Si YF, Min T (2006) Neural networks for mobile robot navigation: a survey. In: Proceedings of the third international conference on advances in neural networks 2:1218–1226Google Scholar
  3. 3.
    Andurkar AG, Rupali T (2017) Fuzzy logic based path navigation for robot using Matlab. Int Res J Eng Technol 04:3165–3170Google Scholar
  4. 4.
    Anmin Z, Zengguang H, Lejie Z, Min T (2005) A neural network-based camera calibration method for mobile robot localization problems. In: Proceedings of the second international conference on advances in neural networks 3:277–284Google Scholar
  5. 5.
    Asita KR, Dayal RP, Harish CD, Manoj KM, Priyadarshi BK (2018) Analysis and use of fuzzy intelligent technique for navigation of humanoid robot in obstacle prone zone. Def Technol 17:1–6Google Scholar
  6. 6.
    Azzeddine B, Abdelfetah H, Hakim B, Abderraouf M, Ouarda H, Brahim B (2017) Optimal path planning and execution for mobile robots using genetic algorithm and adaptive fuzzy-logic control. Robot Auton Syst 89:95–109CrossRefGoogle Scholar
  7. 7.
    Capi G, Kaneko S, Hua B (2015) Neural network based guide robot navigation: an evolutionary approach. Proc Comput Sci 76:74–79CrossRefGoogle Scholar
  8. 8.
    Danica J (2004) Neural networks in mobile robot motion. Int J Adv Robot Syst 1(1):15–22Google Scholar
  9. 9.
    David LC, Wen Y (2017) Path planning of multi-agent systems in unknown environment with neural kernel smoothing and reinforcement learning. Neurocomputing 233:34–42CrossRefGoogle Scholar
  10. 10.
    Faisal M, Hedjar R, Al-Sulaiman M, Al-Mutib K (2013) Fuzzy logic navigation and obstacle avoidance by a mobile robot in an unknown dynamic environment. Int J Adv Robot Syst 10(37):1–7Google Scholar
  11. 11.
    Farhad B, Sepideh NN, Morteza A (2018) Mobile robots path planning: electrostatic potential field approach. Expert Syst Appl 100:68–78CrossRefGoogle Scholar
  12. 12.
    Guan CL, Wei WL (2008) An immunological approach to mobile robot reactive navigation. Appl Soft Comput 8:30–45CrossRefGoogle Scholar
  13. 13.
    Hajer O, Mohamed S, Mohamed M (2016) Fuzzy logic based control for autonomous mobile robot navigation. Comput Intell Neurosci, Volume 2016, Article ID 9548482, 10 pagesGoogle Scholar
  14. 14.
    Julien M, Pierre M, Stephane V, Francois A, Franck G (2017) Path planning with fractional potential fields for autonomous vehicles. IFAC Pap 50:11433–11438Google Scholar
  15. 15.
    Karray A, Njah M, Feki M, Jallouli M (2016) Intelligent mobile manipulator navigation using hybrid adaptive-fuzzy controller. Comput Electr Eng 56:773–783CrossRefGoogle Scholar
  16. 16.
    Mahdi F, Amirreza K, Mohsen J (2016) Humanoid robot path planning with fuzzy Markov decision processes. J Appl Res Technol 14:300–310CrossRefGoogle Scholar
  17. 17.
    Mariam Al S, Rached D (2016) Neural based autonomous navigation of wheeled mobile robots. J Autom Mobile Robot Intell Syst 2(2):64–72Google Scholar
  18. 18.
    Matoui F, Boussaid B, Metoui B, Frej GB, Abdelkrim MN (2017) Path planning of a group of robots with potential field approach: decentralized architecture. IFAC Pap 50:11473–11478CrossRefGoogle Scholar
  19. 19.
    Mauricio B, Douglas WB, Nardnio AM (2017) A robust adaptive fuzzy variable structure tracking control for the wheeled mobile robot: simulation and experimental results. Control Eng Pract 64:27–43CrossRefGoogle Scholar
  20. 20.
    Meyesa R, Tercana H, Roggendorf S, Thiele T, Buscher C, Obdenbusch M, Brecher C, Jeschke S, Meisen T (2017) Motion planning for industrial robots using reinforcement learning. Proc CIRP 63:107–112CrossRefGoogle Scholar
  21. 21.
    Ming-Chih L, Chen-Chien H, Yuan-Jun C, Shih-An L (2012) Hybrid path planning incorporating global and local search for mobile robot. In: Advances in autonomous robotics, Lecture notes in computer science 7429:441–443Google Scholar
  22. 22.
    Mohamed SM, Najla K, Mohamed M, Nabil D (2016) Fuzzy logic controllers design for omnidirectional mobile robot navigation. Appl Soft Comput 49:901–919CrossRefGoogle Scholar
  23. 23.
    Mohamed B, Abdelkrim B, Mohammed C (2017) Robust adaptive neural network-based trajectory tracking control approach for nonholonomic electrically driven mobile robots. Robot Auton Syst 92:30–40CrossRefGoogle Scholar
  24. 24.
    Mohanty PK, Parhi DR (2014) A new intelligent motion planning for mobile robot navigation using multiple adaptive neuro-fuzzy inference system. Appl Math Inf Sci 8(5):2527–2535CrossRefGoogle Scholar
  25. 25.
    Mukesh KS, Dayal RP (2011) Path optimisation of a mobile robot using an artificial neural network controller. Int J Syst Sci 42:107–120MathSciNetCrossRefGoogle Scholar
  26. 26.
    Ngangbam HS, Khelchandra T (2018) Mobile robot navigation using fuzzy logic in static environments. Proc Comput Sci 125:11–17CrossRefGoogle Scholar
  27. 27.
    Omid M, Danial N, Sai HT, Babak K, Weria K (2013) Automatic navigation of mobile robots in unknown environments. Neural Comput Appl 24:15691581Google Scholar
  28. 28.
    Pandey A, Parhi DR (2017) Optimum path planning of mobile robot in unknown static and dynamic environments using fuzzy-wind driven optimization algorithm. Def Technol 13:47–58CrossRefGoogle Scholar
  29. 29.
    Pandey A, Saroj K, Pandey KK, Parhi DR (2016) Mobile robot navigation in unknown static environments using ANFIS controller. Perspect Sci 8:421–423CrossRefGoogle Scholar
  30. 30.
    Patle BK, Parhi DR, Jagadeesh A, Sunil KK (2016) Probabilistic fuzzy controller based robotics path decision theory. World J Eng 13:181–192CrossRefGoogle Scholar
  31. 31.
    Pothal J, Parhi DR (2015) Navigation of multiple mobile robots in a highly clutter terrains using adaptive neuro-fuzzy inference system. Robot Auton Syst 72:48–58CrossRefGoogle Scholar
  32. 32.
    Pratihar DK, Kalyanmoy D, Amitabha G (1999) A genetic-fuzzy approach for mobile robot navigation among moving obstacles. Int J Approx Reason 20:145–172CrossRefzbMATHGoogle Scholar
  33. 33.
    Rahib HA, Irfan SG, Nurullah A, Ersin A, Ahmet C, Sanan A (2017) Fuzzy control of omnidirectional robot. Proc Comput Sci 120:608–616CrossRefGoogle Scholar
  34. 34.
    Simon XY, Max M (2000) An efficient neural network approach to dynamic robot motion planning. Neural Netw 13:143–148CrossRefGoogle Scholar
  35. 35.
    Thi TM, Cosmin C, Duc TT, Robin DK (2016) Heuristic approaches in robot path planning: a survey. Robot Auton Syst 86:13–28CrossRefGoogle Scholar
  36. 36.
    Yaghmaie F Adib, Mobarhani A, Taghirad HD (2013) A new method for mobile robot navigation in dynamic environment: escaping algorithm. In: First RSI/ISM international conference on robotics and mechatronics (ICRoM), February 13–15, Tehran, IranGoogle Scholar
  37. 37.
    Yan Z, Yuliang S, Wei W (2012) Mobile robot hybrid path planning in an obstacle-cluttered environment based on steering control and improved distance propagating. Int J Innov Comput Inf Control 8(6):4095–4109Google Scholar
  38. 38.
    Zhiyu Z, Junjie W, Zefei Z, Donghe Y, Jiang W (2018) Tangent navigated robot path planning strategy using particle swarm optimized artificial potential field. Optik 158:639–651CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.National Institute of Technology ManipurImphalIndia

Personalised recommendations