Intelligent Service Robotics

, Volume 11, Issue 3, pp 237–246 | Cite as

An efficient cooperative exploration strategy for wireless sensor network

  • Assia Belbachir
  • Sorore Benabid
Original Research Paper


Wireless sensor networks (WSNs) are used in several applications such as healthcare devices, aerospace systems, automobile industry, security monitoring. However, WSNs have several challenges to improve the efficiency, robustness, failure tolerance and reliability of these sensors. Thus, cooperation between sensors is an important deal that increases sensor trust. Cooperative WSNs can be used to optimize the exploration of an unknown area in a distributed way. In this paper, the distributed Markovian model strategy that is used due to their past state-dependent reasoning. Moreover, the exploration strategy depends totally on the wireless communication protocol. Hence, in this paper, we propose an efficient cooperative strategy based on cognitive radio and software-defined radio which are promising technologies that increase spectral utilization and optimize the use of radio resources. We implement a distributed exploration strategy (DES) in mobile robots, and several experiments have been performed to localize targets while avoiding obstacles. Experiments were performed with several exploration robots. A comparison with another exploration strategy shows that DES improves the robots exploration.


Exploration strategy Cognitive radio Software-defined radio Wireless sensor network 

Supplementary material

11370_2018_249_MOESM1_ESM.iwa (4 kb)
Supplementary material 1 (iwa 3 KB)
11370_2018_249_MOESM2_ESM.iwa (1 kb)
Supplementary material 2 (iwa 0 KB)
11370_2018_249_MOESM3_ESM.iwa (1 kb)
Supplementary material 3 (iwa 0 KB)
11370_2018_249_MOESM4_ESM.iwa (1 kb)
Supplementary material 4 (iwa 0 KB)
11370_2018_249_MOESM5_ESM.iwa (1 kb)
Supplementary material 5 (iwa 1 KB)
11370_2018_249_MOESM6_ESM.iwa (1 kb)
Supplementary material 6 (iwa 0 KB)
11370_2018_249_MOESM7_ESM.iwa (1 kb)
Supplementary material 7 (iwa 0 KB)
11370_2018_249_MOESM8_ESM.iwa (1 kb)
Supplementary material 8 (iwa 1 KB)
11370_2018_249_MOESM9_ESM.iwa (1 kb)
Supplementary material 9 (iwa 0 KB)
11370_2018_249_MOESM10_ESM.iwa (0 kb)
Supplementary material 10 (iwa 0 KB)
11370_2018_249_MOESM11_ESM.iwa (1 kb)
Supplementary material 11 (iwa 1 KB)
11370_2018_249_MOESM12_ESM.iwa (2 kb)
Supplementary material 12 (iwa 2 KB)
11370_2018_249_MOESM13_ESM.iwa (1 kb)
Supplementary material 13 (iwa 1 KB)
11370_2018_249_MOESM14_ESM.iwa (1 kb)
Supplementary material 14 (iwa 1 KB)
11370_2018_249_MOESM15_ESM.iwa (1 kb)
Supplementary material 15 (iwa 0 KB)
11370_2018_249_MOESM16_ESM.iwa (0 kb)
Supplementary material 16 (iwa 0 KB)
11370_2018_249_MOESM17_ESM.iwa (36 kb)
Supplementary material 17 (iwa 35 KB)
11370_2018_249_MOESM18_ESM.iwa (0 kb)
Supplementary material 18 (iwa 0 KB)
11370_2018_249_MOESM19_ESM.iwa (0 kb)
Supplementary material 19 (iwa 0 KB)
11370_2018_249_MOESM20_ESM.iwa (17 kb)
Supplementary material 20 (iwa 16 KB)
11370_2018_249_MOESM21_ESM.plist (0 kb)
Supplementary material 21 (plist 0 KB)
11370_2018_249_MOESM22_ESM.plist (0 kb)
Supplementary material 22 (plist 0 KB)


  1. 1.
    Akyildiz IF, Lee WY, Vuran MC, Mohanty S (2006) Next generation/dynamic spectrum access/cognitive radio wireless networks. Comput Netw 50(13):2127–2159CrossRefzbMATHGoogle Scholar
  2. 2.
    Alemdar H, Ersoy C (2010) Wireless sensor networks for healthcare: a survey. Comput Netw 54(15):2688–2710. CrossRefGoogle Scholar
  3. 3.
    Baldini G, Sturman TA, Biswas AR, Leschhorn R, Gdor G, Street M (2012) Security aspects in software defined radio and cognitive radio networks: a survey and a way ahead. IEEE Commun Surv Tutor 14(2):355–379CrossRefGoogle Scholar
  4. 4.
    Belbachir A, Benabid S (2016) Smart communication for cooperative wireless sensor network. In: 2016 International conference on applied electronics (AE), pp 15–18.
  5. 5.
    Belbachir A, Ingrand F, Lacroix S (2012) A cooperative architecture for target localization using multiple AUVs. Intell Serv Robot 5(2):119–132. CrossRefGoogle Scholar
  6. 6.
    Benabid S, Aghdam E (2014) Design and simulation of a 6th order continuous-time sigma–delta modulator using integrated lc filter in a standard CMOS technology. In: International conference on applied electronics, pp 21–25Google Scholar
  7. 7.
    Bourgault F, Makarenko AA, Williams SB, Grocholsky B, Durrant-Whyte HF (2002) Information based adaptive robotic exploration. In: IEEE/RSJ international conference on intelligent robots and systems, 2002, vol 1, pp 540–545.
  8. 8.
    Burgard W, Moors M, Schneider F (2002) Collaborative exploration of unknown environments with teams of mobile robots. In: Advances in plan-based control of robotic agents: international seminar dagstuhl castle, Germany, 21–26 Oct 2001, revised papers. Springer, Berlin, pp 52–70Google Scholar
  9. 9.
    Cadena C, Carlone L, Carrillo H, Latif Y, Scaramuzza D, Neira J, Reid ID, Leonard JJ (2016) Simultaneous localization and mapping: present, future, and the robust-perception age. CoRR
  10. 10.
    Carrillo H, Dames P, Kumar V, Castellanos JA (2015) Autonomous robotic exploration using occupancy grid maps and graph slam based on Shannon and Renyi entropy. In: 2015 IEEE international conference on robotics and automation (ICRA), pp 487–494.
  11. 11.
    Deng X, Milios E, Mirzaian A (2001) Robot map verification of a graph world. J Combin Optim 5(4):383–395. MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Doroodgar B, Liu Y, Nejat G (2014) A learning-based semi-autonomous controller for robotic exploration of unknown disaster scenes while searching for victims. IEEE Trans Cybern 44(12):2719–2732. CrossRefGoogle Scholar
  13. 13.
    Elfes A (1989) Occupancy grids: a probabilistic framework for robot perception and navigation. PhD thesis, Pittsburgh, PA, USA. AAI9006205Google Scholar
  14. 14.
    Katiyar V, Kumar P, Chand N (2011) An intelligent transportation systems architecture using wireless sensor networks. Int J Comput Appl 14(2):22–26Google Scholar
  15. 15.
    Lee JS, Su YW, Shen CC (2007) A comparative study of wireless protocols: Bluetooth, UWB, ZigBee, and Wi-Fi. In: Industrial Electronics Society, 2007. IECON 2007. 33rd Annual Conference of the IEEE, pp 46–51Google Scholar
  16. 16.
    Liu Y, Nejat G (2013) Robotic urban search and rescue: a survey from the control perspective. J Intell Robot Syst 72(2):147–165. CrossRefGoogle Scholar
  17. 17.
    Lovász L (1996) Random walks on graphs: a survey. In: Miklós D, Sós VT, Szőnyi T (eds) Combinatorics, Paul Erdős is Eighty, vol 2. János Bolyai Mathematical Society, Budapest, pp 353–398Google Scholar
  18. 18.
    Low KH, Dolan J, Khosla P (2009) Information-theoretic approach to efficient adaptive path planning for mobile robotic environmental sensing. In: Proceedings of the 19th international conference on automated planning and scheduling (ICAPS-09), pp 233–240Google Scholar
  19. 19.
    Mitola J III (2000) Cognitive radio: an integrated agent architecture for software defined radio. PhD dissertation, KTH Royal Institute of Technology Stockholm, SwedenGoogle Scholar
  20. 20.
    Mitola J III, Maguire GQ Jr (1999) Cognitive radio: making software radios more personal. IEEE Pers Commun 6(4):13–18CrossRefGoogle Scholar
  21. 21.
    Moorehead SJ, Simmons R, Whittaker WL (2001) Autonomous exploration using multiple sources of information. In: Proceedings 2001 ICRA. IEEE international conference on robotics and automation (Cat. No. 01CH37164), vol 3, pp 3098–3103.
  22. 22.
    Popa D, Sanderson A, Komerska R, Mupparapu S, Blidberg R, Chappel S (2004) Adaptive sampling algorithms for multiple autonomous underwater vehicles. In: Autonomous underwater vehicles IEEE/OES, pp 108–118Google Scholar
  23. 23.
    Razavi B (2015) The future of radios. In: IEEE international symposium on circuits and systems, pp 1–8Google Scholar
  24. 24.
    Stachniss C, Martínez Mozos Ó, Burgard W (2008) Efficient exploration of unknown indoor environments using a team of mobile robots. Ann Math Artif Intell 52(2):205–227. MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Stachniss C, Martínez Mozos Ó, Burgard W (2009) Efficient exploration of unknown indoor environments using a team of mobile robots. Ann Math Artif Intell 52(2):205–227. MathSciNetzbMATHGoogle Scholar
  26. 26.
    Tarokh V, Jafarkhani H, Calderbank A (1999) Space–time block codes from orthogonal designs. IEEE Trans Inf Theory 45(5):1456–1467. MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Tarokh V, Seshadri N, Calderbank AR (1998) Space–time codes for high data rate wireless communication: performance criterion and code construction. IEEE Trans. Inf. Theory 44(2):744–765MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Taylor CJ, Kriegman DJ (1993) Exploration strategies for mobile robots. In: IEEE international conference on robotics and automation, pp 248–253Google Scholar
  29. 29.
    Thrun S (2003) Exploring artificial intelligence in the new millennium. In: Robotic mapping: a survey. Morgan Kaufmann Publishers Inc., San Francisco, pp 1–35. Accessed 20 Mar 2018
  30. 30.
    Thrun S, Burgard W, Fox D (1998) A probabilistic approach to concurrent mapping and localization for mobile robots. Mach Learn 31(1):29–53. CrossRefzbMATHGoogle Scholar
  31. 31.
    Toriz A, Sánchez López A, Lama MAO (2008) Coordinated multi-robot exploration with SRT-radial. In: Advances in artificial intelligence—IBERAMIA 2008, 11th Ibero-American conference on AI, Lisbon, Portugal, 14-17 Oct 2008. Proceedings, pp 402–411.
  32. 32.
    Whaite P, Ferrie FP (1997) Autonomous exploration: driven by uncertainty. IEEE Trans Pattern Anal Mach Intell 19(3):193–205. CrossRefGoogle Scholar
  33. 33.
    Yamauchi B, Schultz A, Adams W (1998) Mobile robot exploration and map-building with continuous localization. In: 1998 IEEE international conference on robotics and automation, 1998. Proceedings, vol 4, pp 3715–3720.
  34. 34.
    Zhang B, Sukhatme GS (2007) Adaptive sampling with multiple mobile robots. In: IEEE international conference on robotics and automation.

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Polytechnic Institute of Advanced Sciences (IPSA)Ivry-sur-SeineFrance
  2. 2.UPMC Univ Paris 06, SMA-LIP6Sorbonne UniversitiesParisFrance
  3. 3.UPMC Univ Paris 06, CIAN-LIP6Sorbonne UniversitiesParisFrance

Personalised recommendations