Advertisement

Intelligent Service Robotics

, Volume 11, Issue 3, pp 225–235 | Cite as

Variable stiffness control of series elastic actuated biped locomotion

  • Jianwen Luo
  • Shuguo Wang
  • Ye Zhao
  • Yili Fu
Original Research Paper
  • 201 Downloads

Abstract

This study investigates the problem of dynamic walking impact on a biped robot. Two online variable stiffness control algorithms, i.e., torque balance algorithm (TBA) and surface fitting algorithm (SFA), are proposed based on virtual spring leg to achieve compliant performance. These two algorithms target on solving the high nonlinearity commonly existing in legged robot actuators. A planar biped robot experiment platform is designed for testing the proposed variable stiffness control. The experiments compare the performance of TBA and SFA and verify that applying the variable stiffness control of a virtual spring leg is capable of effectively absorbing unforeseen ground impacts and thus improving stability and safety of walking biped robots.

Keywords

Variable stiffness control Series elastic actuator Biped robot Virtual leg 

References

  1. 1.
    Hogan N (1984) Impedance control: an approach to manipulation. In: IEEE American control conference, pp 304–313Google Scholar
  2. 2.
    Hogan N (1987) Stable execution of contact tasks using impedance control. In: IEEE international conference on robotics and automation (ICRA), pp 1047–1054Google Scholar
  3. 3.
    Zinn M, Khatib O, Roth B, Salisbury J (2004) Playing it safe [human-friendly robots]. IEEE Robot Autom Mag 11(2):12–21CrossRefGoogle Scholar
  4. 4.
    Luo J-w, Fu Y-l, Wang S-g (2017) 3D stable biped walking control and implementation on real robot. Adv Robot 31(12):634–649CrossRefGoogle Scholar
  5. 5.
    Jianwen L, Fu Y, Wang S, Qiao M (2017) How does the compliant legs affect walking stability. In: 2017 IEEE international conference on robotics and biomimetics (ROBIO). IEEEGoogle Scholar
  6. 6.
    Ketelaar JG, Visser LC, Stramigioli S, et al (2013) Controller design for a bipedal walking robot using variable stiffness actuators. In: IEEE international conference on robotics and automation (ICRA). IEEE Press, Karlsruhe, pp 5650–5655Google Scholar
  7. 7.
    Visser LC, Stramigioli S, Carloni R (2012) Robust bipedal walking with variable leg stiffness. In: 4th IEEE RAS & EMBS international conference biomedical robotics and biomechatronics (BioRob), pp 1626–1631Google Scholar
  8. 8.
    Geyer H, Seyfarth A, Blickhan R (2006) Compliant leg behaviour explains basic dynamics of walking and running. Proc R Soc B Biol Sci 273(1603):2861–2867CrossRefGoogle Scholar
  9. 9.
    Rummel J, Blum Y, Maus HM et al (2010) Stable and robust walking with compliant legs. In: IEEE international conference on robotics and automation (ICRA). IEEE Press, Alaska, pp 5250–5255Google Scholar
  10. 10.
    Vanderborght B, Albu-Schäffer A, Bicchi A et al (2013) Variable impedance actuators: a review. Robot. Auton. Syst. 61(12):1601–1614CrossRefGoogle Scholar
  11. 11.
    Visser LC, Carloni R, Stramigioli S (2011) Energy-efficient variable stiffness actuators. IEEE Trans Robot 27(5):865–875CrossRefGoogle Scholar
  12. 12.
    Visser LC, Carloni R, Klijnstra F et al (2010) A prototype of a novel energy efficient variable stiffness actuator. In: IEEE international conference on engineering in medicine and biology society (EMBC). IEEE Press, Buenos Aires, pp 3703–3706Google Scholar
  13. 13.
    Pratt J (2000) Exploiting inherent robustness and natural dynamics in the control of bipedal walking robots. Ph.D. thesis, Massachusetts Institute of TechnologyGoogle Scholar
  14. 14.
    Pratt G, Williamson M (1990) Series elastic actuators. In: IEEE international workshop on intelligent robots and systems, IROS, pp 399–406Google Scholar
  15. 15.
    Boaventura T, Semini C, Buchli J, Frigerio M, Focchi M, Caldwell DG (2012) Dynamic torque control of a hydraulic quadruped robot. In: IEEE international conference on robotics and automation (ICRA). IEEE Press, Minnesota, pp 1889–1894Google Scholar
  16. 16.
    Hyon S-H, Hale JG, Cheng G (2007) Full-body compliant human-humanoid interaction: balancing in the presence of unknown external forces. IEEE Trans Robot 23(5):884–898CrossRefGoogle Scholar
  17. 17.
    Pratt G, Matthew W (1995) Series elastic actuators. In: Proceedings of IEEE/RSJ international conference intelligent robots and systems 95. Human Robot Interaction and Cooperative Robots, vol. 1, pp 399–406Google Scholar
  18. 18.
    Schepelmann A, Geberth K, Geyer H (2010) Compact nonlinear springs with user defined torque-deflection profiles for series elastic actuators. In: IEEE International conference on robotics and automation (ICRA). IEEE Press, Hong Kong, pp 3411–3416Google Scholar
  19. 19.
    Jafari A, Tsagarakis NG, Vanderborght B, Caldwell DG (2010) A novel actuator with adjustable stiffness (AwAS). In: 2010 IEEE/RSJ international conference on intelligent robots and systems (IROS), pp 4201–4206Google Scholar
  20. 20.
    Grioli G, Wolf S, Garabini M, Catalano M, Burdet E, Caldwell D, Bicchi A (2005) Variable stiffness actuators: the user’s point of view. Int J Robot Res 34(6):727–743CrossRefGoogle Scholar
  21. 21.
    Hopkins MA, Ressler SA, Lahr DF, Leonessa A, Hong DW (2015) Embedded joint-space control of a series elastic humanoid. In: IEEE/RSJ international conference on intelligent robots and systems, pp. 3358–3365Google Scholar
  22. 22.
    Tagliamonte NL, Accoto D, Guglielmelli E (2014) Rendering viscoelasticity with series elastic actuators using cascade control. In: IEEE- RAS international conference on robotics and automation, pp 2424–2429Google Scholar
  23. 23.
    Kim MJ et al (2017) Enhancing joint torque control of series elastic actuators with physical damping. 2017 IEEE international conference on robotics and automation (ICRA). IEEEGoogle Scholar
  24. 24.
    Mehling JS, Holley J, O’Malley MK (2015) Leveraging disturbance observer based torque control for improved impedance rendering with series elastic actuators. In: 2015 IEEE/RSJ international conference on intelligent robots and systems (IROS). IEEEGoogle Scholar
  25. 25.
    Sariyildiz E, Chen G, Haoyong Y (2016) An acceleration-based robust motion controller design for a novel series elastic actuator. IEEE Trans Ind Electron 63(3):1900–1910CrossRefGoogle Scholar
  26. 26.
    Boaventura T, Semini C, Buchli J, Frigerio M, Focchi M, Caldwell DG (2012) Dynamic torque control of a hydraulic quadruped robot. In: IEEE international conference on robotics and automation (ICRA). IEEE Press, Minnesota, pp 1889–1894Google Scholar
  27. 27.
    Lu J et al (2015) Design and torque-mode control of a cable-driven rotary series elastic actuator for subject-robot interaction. In: 2015 IEEE international conference on advanced intelligent mechatronics (AIM). IEEEGoogle Scholar
  28. 28.
    Agarwal P et al (2017) Design, control, and testing of a thumb exoskeleton with series elastic actuation. Int J Robot Res 36.3:355–375CrossRefGoogle Scholar
  29. 29.
    Laffranchi M, Chen L, Kashiri N, Lee J, Tsagarakis NG, Caldwell DG (2014) Development and control of a series elastic actuator equipped with a semi active friction damper for human friendly robots. Robot Auton Syst 62(12):1827–1836CrossRefGoogle Scholar
  30. 30.
    Oh S, Kong K (2017) High-precision robust force control of a series elastic actuator. IEEE/ASME Trans Mechatron 22(1):71–80CrossRefGoogle Scholar
  31. 31.
    Zhu Q et al (2016) Adaptive torque and position control for a legged robot based on a series elastic actuator. Int J Adv Rob Syst 13.1:26CrossRefGoogle Scholar
  32. 32.
    Zhao Y, Paine N, Jorgensen SJ, Sentis L (2017) Impedance control and performance measure of series elastic actuators. IEEE Trans Ind Electron 65:2817–2827CrossRefGoogle Scholar
  33. 33.
    Zhao Y, Nicholas P, Kim KS, Sentis L (2015) Stability and performance limits of latency-prone distributed feedback controllers. IEEE Trans Ind Electron 62(11):7151–7162CrossRefGoogle Scholar
  34. 34.
    Winter DA, Patla AE, Prince F, Ishac M, Gielo-Perczak K (1998) Stiffness control of balance in quiet standing. J Neurophysiol 80(3):1211–1221CrossRefGoogle Scholar
  35. 35.
    Zelik KE, Kuo AD (2010) Human walking isn’t all hard work: evidence of soft tissue contributions to energy dissipation and return. J Exp Biol 213(24):4257–4264CrossRefGoogle Scholar
  36. 36.
    Schmitt S, Günther M (2011) Human leg impact: energy dissipation of wobbling masses. Arch Appl Mech 81(7):887–897CrossRefMATHGoogle Scholar
  37. 37.
    Dickinson MH et al (2000) How animals move: an integrative view. Science 288(5463):100–106CrossRefGoogle Scholar
  38. 38.
    Rummel J, Seyfarth A (2008) Stable running with segmented legs. Int J Robot Res 27(8):919–934CrossRefGoogle Scholar
  39. 39.
    Rummel J, Blum Y, Seyfarth A (2010) Robust and efficient walking with spring-like legs. Bioinspir Biomimet 5(4):046004CrossRefGoogle Scholar
  40. 40.
    Garofalo G, Ott C, Albu-Schaffer A (2012) Walking control of fully actuated robots based on the bipedal slip model. In: IEEE international conference on robotics and automation (ICRA). IEEE Press, Minnesota, pp 1456–1463Google Scholar
  41. 41.
    Qiao M, Jindrich DL (2012) Task-level strategies for human sagittal-plane running maneuvers are consistent with robotic control policies. PLoS ONE 7(12):e51888.  https://doi.org/10.1371/journal.pone.0051888 CrossRefGoogle Scholar
  42. 42.
    Pratt J (1995) Virtual model control of a biped walking robot. M.Eng, thesis, Massachusetts Institute of TechnologyGoogle Scholar
  43. 43.
    Torres A (1996) Virtual model control of a hexapod walking robot. B.S., thesis, Massachusetts Institute of TechnologyGoogle Scholar
  44. 44.
    Pratt J, Torres A, Dilworth P et al (1996) Virtual actuator control, intelligent robots and systems. In: IEEE international conference on robotics and automation (IROS) 96. IEEE Press, Osaka, pp. 1219–1226Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key State Laboratory of Robotics and SystemHarbin Institute of TechnologyHarbinChina
  2. 2.Agile Robotics LabHarvard UniversityCambridgeUSA

Personalised recommendations