Advertisement

Intelligent Service Robotics

, Volume 10, Issue 3, pp 185–194 | Cite as

Autonomous flying with quadrocopter using fuzzy control and ArUco markers

  • Jan Bacik
  • Frantisek Durovsky
  • Pavol Fedor
  • Daniela Perdukova
Original Research Paper

Abstract

In this paper, we present an approach which enables a low-cost quadrocopter to fly various trajectories autonomously. Artificial landmarks are used for pose estimation, and a fuzzy controller is utilized to generate steering commands. The presented system can navigate a low-cost quadrocopter along a predefined path without the need for any additional external sensors. In addition to a full description of our system, we also introduce our software package for Robot Operating System, which allows the robotics community to experiment with proposed mapping algorithm.

Keywords

Quadrocopter ArUco Autonomous flying ROS Fuzzy control 

Notes

Acknowledgements

The authors wish to thank the project VEGA 459 1/0464/15 for its support. This work was supported by the Slovak Research and Development Agency under the contract No. APVV-15-0750.

References

  1. 1.
    Bry A et al (2015) Aggressive flight of fixed-wing and quadrotor aircraft in dense indoor environments. The International Journal of Robotics Research. 34(7):969–1002. doi: 10.1177/0278364914558129 CrossRefGoogle Scholar
  2. 2.
    Hehn M, RaffaelloD’A (2012) Real-time trajectory generation for interception maneuvers with quadrocopters. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); 7. - 12.10.2012; Vilamoura. IEEE; 2012. p. 4979-4984. DOI: 10.1109/IROS.2012.6386093
  3. 3.
    M. Q. Lindsey M Q, Mellinger D, Kumar V (2012) Construction of cubic structures with quadrotor teams. In: Proceedings of Robotics: Science and Systems (RSS); Los Angeles, USA. MIT Press; 2012. p. 177-184Google Scholar
  4. 4.
    Grzonka S, Grisetti G, Burgard W (2009) Towards a navigation system for autonomous indoor flying. In: IEEE International Conference on Robotics and Automation (ICRA); 12. - 17.5.2009; Kobe. IEEE; 2009. p. 2878-2883. DOI: 10.1109/ROBOT.2009.5152446
  5. 5.
    Ascending technologies [Internet]. 2016 . Available from: http://www.asctec.de/
  6. 6.
    Krishnakumar R, Rasheed AM, Kumar KS, \(>>\) ””, October 21, (2015) Enhanced hover control of quad tilt frame UAV under windy conditions. International Journal of Advanced Robotic Systems. 2015:1–14. doi: 10.5772/61231
  7. 7.
    Krajník T, Vonásek V, Fišer D, Faigl J (2011) AR-Drone as a Platform for Robotic Research and Education. Communications in Computer and Information Science. 161:172–186CrossRefGoogle Scholar
  8. 8.
    Rullan-Lara JL, Sanahuja G, Lozano R, Salazar S, Garcia-Hernandez R, Ruz-Hernandez JA (2013) Indoor Localization of a Quadrotor Based on WSN: A Real-Time Application. International Journal of Advanced Robotic Systems. 10:48. doi: 10.5772/53748 CrossRefGoogle Scholar
  9. 9.
    Kim SJ, Kim BK (2012) Dynamic Ultrasonic Hybrid Localization System for Indoor Mobile Robots. IEEE Transactions on Industrial Electronics. 60(20):4562–4573. doi: 10.1109/TIE.2012.2216235 Google Scholar
  10. 10.
    Droeschel D, Schreiber M, Behnke S (2013) “.” UAV-g 8/2013. (2013). Omnidirectional perception for Lightweight UAVs using a continuously rotating 3D laser scanner. In: UAV-g 8/2013; 4. – 6.9. 2013; Rostock, Germany. The international archives of the photogrammetry, remote sensing and spatial information sciences, XL-1 W 2; 2013. p. 107-112. DOI: 10.5194/isprsarchives-XL-1-W2-107-2013
  11. 11.
    Engel J, Sturm J, Cremers D (2012) Accurate figure flying with a quadrocopter using onboard visual and inertial sensing. In: Workshop on Visual Control of Mobile Robots /ViCoMoR at the IEEE/RJS International Conference of Inteligent Robots and Sytems (IROS); 7.-12.10.2012; Vilamoura, Portugal. IEEE; 2012Google Scholar
  12. 12.
    Zingg S, Scaramuzza D, Weiss S, Siegwart R (2010) MAV navigation through indoor corridors using optical flow. In: Robotics and Automation; 3-7 May 2010; Anchorage, AK. 2010. p. 3361 - 3368. DOI: 10.1109/ROBOT.2010.5509777
  13. 13.
    Eberli D et al (2011) Vision based position control for MAVs using one single circular landmark. Journal of Intelligent & Robotic Systems. 61(1):495–512. doi: 10.1007/s10846-010-9494-8 CrossRefGoogle Scholar
  14. 14.
    Lamberti F et al (2013) Mixed marker-based/marker-less visual odometry system for mobile robots. International Journal of Advanced Robotic Systems. 10(1):1–11. doi: 10.5772/56577 CrossRefGoogle Scholar
  15. 15.
    Hartmann P, Ben C, Moormann D (2014) Naviagation for Vertical Precision Landing Based on Optical Tracking of a Spatial Retroreflective Marker Array. In: 29th Congress of the International Council of the Aeronautical Sciences; 7-12 September; St. Petersburg, Russia. 2014. p. pp. 1-8Google Scholar
  16. 16.
    Muñoz-Salinas, Rafael, et al (2016) “Mapping and Localization from Planar Markers.” arXiv preprint arXiv:1606.00151
  17. 17.
    Garrido-Jurado S et al (2014) Automatic generation and detection of highly reliable fiducial markers under occlusion. Journal Pattern Recognition. 47(6):2280–2292. doi: 10.1016/j.patcog.2014.01.005 CrossRefGoogle Scholar
  18. 18.
    Kendoul F (2012) Survey of advances in guidance, navigation, and control of unmanned rotorcraft systems. Journal of Field Robotics. 29(2):315–378. doi: 10.1002/rob.20414 CrossRefGoogle Scholar
  19. 19.
    Derafa L, Madani T, Benallegue A (2006) Dynamic Modelling and Experimental Identification of Four Rotors Helicopter Parameters. In: Proceedings of the IEEE International Conference on Industrial Technology; 15.-17.12.2006; Mumbai, India. IEEE; 2006. p. 1834-1839. DOI: 10.1109/ICIT.2006.372515
  20. 20.
    OstafewCh J, Schoellig AP, Barfoot TD (2014) Learning-based nonlinear model predictive control to improve vision-based mobile robot path-tracking in challenging outdoor environments. In: IEEE International Conference on Robotics and Automation (ICRA); 31.5. - 7.6.2014; Hong Kong. IEEE; 2014. p. 4029-4036. DOI: 10.1109/ICRA.2014.6907444
  21. 21.
    Gautam D, Ha Ch (2013) Control of a quadrotor using a smart self-tuning fuzzy PID controller. International Journal of Advanced Robotic Systems. 10:1–9. doi: 10.5772/5691 CrossRefGoogle Scholar
  22. 22.
    Poundsa P, Mahonyb R, Corkec P (2010) Modelling and control of a large quadrotor robot. Control Engineering Practice. 18(7):691–699. doi: 10.1016/j.conengprac.2010.02.008 CrossRefGoogle Scholar
  23. 23.
    Mamdani EH, Assilian S (1975) An experiment in linguistic synthesis with a fuzzy logic controller. International Journal of Man-Machine Studies. 7(1):1–13CrossRefzbMATHGoogle Scholar
  24. 24.
    Szlachetko B, Lower M, Nguyen NT, Hoang K, Jȩdrzejowicz P (2012) On Quadrotor Navigation Using Fuzzy Logic Regulators, Computational Collective Intelligence. Technologies and Applications: 4th International Conference, ICCCI 2012, Ho Chi Minh City, Vietnam, November 28–30, 2012. Proceedings, Part IGoogle Scholar
  25. 25.
    Indrawati V, Prayitno A, Kusuma T A (2015) Waypoint Navigation of AR.Drone Quadrotor Using Fuzzy Logic Controller, TELKOMNIKA, Vol.13, No.3, September 2015, pp. \(930\sim 939\) Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1. Faculty of Electrical Engineering and Informatics, Department of Electrical Engineering and MechatronicsTechnical University of KosiceKosiceSlovakia
  2. 2.Faculty of Mechanical Engineering, Department of Automation, Mechatronics and RoboticsTechnical University of KosiceKosiceSlovakia

Personalised recommendations