Skip to main content

A light non-monotonic knowledge-base for service robots


In this paper a Non-Monotonic Knowledge-Base (KB) for practical applications in service robots is presented. The KB is defined as a conceptual hierarchy with inheritance that supports the expression of defaults and exceptions. All classes and individuals, with their properties and relations, can be updated dynamically and the KB-System supports non-monotonic behavior. Non-monotonicity is handled on the basis of a specificity criteria, such that more specific properties and relations have precedence over more general ones. The system supports the expression of conceptual (or terminological) and factual (or assertional) knowledge, which are used in inference in a coherent and consistent way. The KB-System is embedded within the IOCA Architecture, where knowledge about how to communicate and interact with the world, and also knowledge of the particular interpretation situation are represented. The cognitive architecture is structured around a main communication cycle, and queries and conceptual inferences are performed on demand during the interaction of the robot with other agents or the world. The overall structure of the KB with its main interpreter and supporting utilities as well as the embedding of the KB-system in the robot’s architecture are also presented. The KB-System is illustrated with a case study in service robots scenarios, where a practical non-monotonic KB is required. Finally, the implementation of the KB-System in the robot Golem-III is described.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.


  1. 1.

    Ahlrichs U, Fischer J, Denzler J, Drexler C, Niemann H, Noth E, Paulus D (1999) Knowledge based image and speech analysis for service robots. In: Proceedings of the integration of speech and image understanding, pp 21–47

  2. 2.

    Anderson JR, Bower GH (1980) Human associative memory: a brief edition. Lawrence Erlbaum Associates, Publishers, Hillsdale, New Jersey

    Google Scholar 

  3. 3.

    Baader F, Calvanese D, McGuinness DL, Nardi D, Patel-Schneider PF (2010) The description logic handbook: theory, implementation, and applications. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  4. 4.

    Becker J, Bersch C, Pangercic D, Pitzer B, Rühr T, Sankaran B, Sturm J, Stachniss C, Beetz M, Burgard W (2011) The pr2 workshop-mobile manipulation of kitchen containers. In: IROS workshop on results, challenges and lessons learned in advancing robots with a common platform, vol 120

  5. 5.

    Brachman RJ, Schmolze JG (1985) An overview of the kl-one knowledge representation system. Cognit Sci 9(2):171–216

    Article  Google Scholar 

  6. 6.

    Brewka G, Eiter T, Truszczyński M (2011) Answer set programming at a glance. Commun ACM 54(12):92–103

    Article  Google Scholar 

  7. 7.

    Burghart C, Mikut R, Stiefelhagen R, Asfour T, Holzapfel H, Steinhaus P, Dillmann R (2005) A cognitive architecture for a humanoid robot: a first approach. In: Proceedings of the IEEE-RAS international conference on humanoid robots, pp 357–362

  8. 8.

    Chen X, Ji J, Jiang J, Jin G, Wang F, Xie J (2010) Developing high-level cognitive functions for service robots. In: Proceedings of the international conference on autonomous agents and multiagent systems, vol 1, pp 989–996

  9. 9.

    Chen X, Lu D, Chen K, Chen Y, Wang N (2014) KeJia : the intelligent service robot for RoboCup@Home 2014. Tech. Rep., Multi-Agent Systems Lab., Department of Computer Science and Technology, University of Science and Technology of China

  10. 10.

    Doyle J (1979) Artificial intelligence. Truth Maint Syst 12(3):251–272

    Google Scholar 

  11. 11.

    Fan Z, Tosello E, Palmia M, Pagello E (2014) In: Proceedings of the international conference intelligent autonomous systems

  12. 12.

    Galindo C, Saffiotti A, Coradeschi S, Buschka P, Fernandez-Madrigal JA, Gonzalez J (2005) Multi-hierarchical semantic maps for mobile robotics. In: Proccedings of the IEEE/RSJ international conference on intelligent robots and systems, pp 2278–2283

  13. 13.

    Galindo C, andez Madrigal JAF, alez JG, Saffiotti A (2008) Robot task planning using semantic maps. Robot Auton Syst 56(11):955–966

    Article  Google Scholar 

  14. 14.

    Giunchiglia E, Lee J, Lifschitz V, McCain N, Turner H (2004) Nonmonotonic causal theories. Artif Intell 153(1–2):49–104

    MathSciNet  Article  MATH  Google Scholar 

  15. 15.

    Hagras HA (2004) A hierarchical type-2 fuzzy logic control architecture for autonomous mobile robots. IEEE Trans Fuzzy Syst 12(4):524–539

    Article  Google Scholar 

  16. 16.

    Hawes N, Hanheide M, Hargreaves J, Page B, Zender H, Jensfelt P (2011) Home alone: autonomous extension and correction of spatial representations. In: robotics and automation (ICRA), 2011 IEEE international conference on, pp 3907–3914

  17. 17.

    Hoffmann F, Pfister G (1997) Evolutionary design of a fuzzy knowledge base for a mobile robot. Int J Approx Reason 17(4):447–469

    Article  MATH  Google Scholar 

  18. 18.

    Ivaldi S, Nguyen SM, Lyubova N, Droniou A, Padois V, Filliat D, Oudeyer PY, Sigaud O (2014) Object learning through active exploration. IEEE Trans Auton Ment Dev 6(1):56–72

    Article  Google Scholar 

  19. 19.

    Karg M, Kirsch A (2012) Acquisition and use of transferable, spatio-temporal plan representations for human-robot interaction. In: Proceedings of the IEEE/RSJ international conference on intelligent robots and systems, pp 5220–5226

  20. 20.

    Kollar T, Perera V, Nardi D, Veloso M (2013) Learning environmental knowledge from task-based human-robot dialog. In: Proceedings of the IEEE international conference on robotics and automation, pp 4304–4309

  21. 21.

    Lemaignan S (2012) Grounding the interaction: knowledge management for interactive robots. Ph.D. thesis, Université de Toulouse

  22. 22.

    Lemaignan S, Ros R, Msenlechner L, Alami R, Beetz M (2010) Oro, a knowledge management platform for cognitive architectures in robotics. In: Intelligent robots and systems (IROS), 2010 IEEE/RSJ international conference on, pp 3548–3553

  23. 23.

    Lemaignan S, Ros R, Alami R, Beetz M (2011) What are you talking about? grounding dialogue in a perspective-aware robotic architecture. In: Proceedings of the IEEE RO-MAN, pp 107–112

  24. 24.

    Lemaignan S, Ros R, Sisbot EA, Alami R, Beetz M (2012) Grounding the interaction: anchoring situated discourse in everyday human-robot interaction. Int J Soc Robot 4(2):181–199

    Article  Google Scholar 

  25. 25.

    Lim GH, Suh IH, Suh H (2011) Ontology-based unified robot knowledge for service robots in indoor environments. IEEE Trans Syst Man Cybern Part A Syst Hum 41(3):492–509

    Article  Google Scholar 

  26. 26.

    MacGregor R, Burstein MH (1991) Using a description classifier to enhance knowledge representation. IEEE Expert 6(3):41–46

    Article  Google Scholar 

  27. 27.

    Pangercic D, Tenorth M, Jain D, Beetz M (2010) Combining perception and knowledge processing for everyday manipulation. In: IEEE/RSJ international conference on intelligent robots and systems, pp 1065–1071

  28. 28.

    Petković D, Issab M, Pavlović ND, Zentnerb L, Žarko Ćojbašić (2012) Adaptive neuro fuzzy controller for adaptive compliant robotic gripper. Expert Syst Appl 39(18):13,295–13,304

    Article  Google Scholar 

  29. 29.

    Petković D, Shamshirband S, Anuar NB, Sabri AQM, Rahman ZBA, Pavlović ND (2016) Input displacement neuro-fuzzy control and object recognition by compliant multi-fingered passively adaptive robotic gripper. J Intell Robot Syst 82:177–187

    Article  Google Scholar 

  30. 30.

    Pineda LA, Meza I, Aviles H, Gershenson C, Rascon C, Alvarado M, Salinas L (2011) IOCA: interaction-oriented cognitive architecture. Res Comput Sci 54:273–284

    Google Scholar 

  31. 31.

    Pineda LA, Rodríguez A, Fuentes G, Rascon C, Meza IV (2015) Concept and functional structure of a service robot. Int J Adv Robot Syst 12:6. doi:10.5772/60026

  32. 32.

    Pineda LA, Salinas L, Meza IV, Rascon C, Fuentes G (2013) SitLog: a programming language for service robot tasks. Int J Adv Robot Syst 10:358. doi:10.5772/56906

  33. 33.

    Reiter R (1980) A logic for default reasoning. Artif Intell 13:81–132

    MathSciNet  Article  MATH  Google Scholar 

  34. 34.

    Schiffer S, Ferrein A, Lakemeyer G (2012) Reasoning with qualitative positional information for domestic domains in the situation calculus. J Intell Robot Syst Theory Appl 66(1–2):273–300

    Article  Google Scholar 

  35. 35.

    Schiffer S, Hoppe N, Lakemeyer G (2013) Natural language interpretation for an interactive service robot in domestic domains. In: Filipe J, Fred A (eds) Agents and artificial intelligence, communications in computer and information science, vol 358. Springer, Berlin Heidelberg, pp 39–53

    Google Scholar 

  36. 36.

    Schmidt-Rohr SR, Knoop S, Lösch M (2008) Bridging the gap of abstraction for probabilistic decision making on a multi-modal service robot. In: robotics: science and systems IV, pp 105–110

  37. 37.

    Schmidt-Rohr SR, Dirschl G, Meissner P, Dillmann R (2011) A knowledge base for learning probabilistic decision making from human demonstrations by a multimodal service robot. In: Proceedings of the international conference on advanced robotics, pp 235–240

  38. 38.

    Seraji H, Howard A (2002) Behavior-based robot navigation on challenging terrain: a fuzzy logic approach. IEEE Trans Robot Autom 18(3):308–321

    Article  Google Scholar 

  39. 39.

    Sisbot EA, Ros R, Alami R (2011) Situation assessment for human-robot interactive object manipulation. In: RO-MAN, pp 15–20

  40. 40.

    Strasser C, Antonelli GA (2014) Non-monotonic logic. In: Zalta Ward N (ed) The stanford encyclopedia of philosophy (Winter 2014 Edition). Academic Press, New York

    Google Scholar 

  41. 41.

    Stückler J, Behnke S (2011) Improving people awareness of service robots by semantic scene knowledge. In: Ruiz-del Solar J, Chown E, Plöger PG (eds) RoboCup 2010. Springer, Heidelberg, pp 157–168

    Google Scholar 

  42. 42.

    Tenorth M, Beetz M (2013) Knowrob: a knowledge processing infrastructure for cognition-enabled robots. Int J Robot Res 32(5):566–590

  43. 43.

    Tenorth M, Beetz M (2015) Representations for robot knowledge in the KnowRob framework. Artif Intell. doi:10.1016/j.artint.2015.05.010

  44. 44.

    Tenorth M, Kunze L, Jain D, Beetz M (2010) Knowrob-map - knowledge-linked semantic object maps. In: IEEE-RAS international conference on humanoid robots, pp 430–435

  45. 45.

    Tulving E (2013) Memory systems: episodic and semantic memory. In: Tulving E, Donaldson W (eds) Organization of memory. Academic Press, New York, pp 381–403

    Google Scholar 

  46. 46.

    Zhang S, Sridharan M, Gelfond M, Wyatt J (2012) KR3: An architecture for knowledge representation and reasoning in robotics. In: Proceedings of the international workshop on non-monotonic reasoning

  47. 47.

    Zhang S, Sridharan M, Sheng Bao F (2012) ASP+POMDP: integrating non-monotonic logic programming and probabilistic planning on robots. In: Proceedings of the IEEE international conference on development and learning and epigenetic robotics

Download references


We thank the support of Mauricio Reyes, Hernando Ortega, Noé Hernández, Ricardo Cruz, Varinia Estrada and the members of the Golem Group who participated in the development of the robot Golem-III. We also acknowledge the support of Grants CONACYT’s 178673, ICYTDF-209/12 and PAPIIT-UNAM’s IN-107513 and IN-109816.

Author information



Corresponding author

Correspondence to Luis A. Pineda.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pineda, L.A., Rodríguez, A., Fuentes, G. et al. A light non-monotonic knowledge-base for service robots. Intel Serv Robotics 10, 159–171 (2017).

Download citation


  • Knowledge representation in service robots
  • Non-monotonic KB-systems
  • The Golem-III robot