Intelligent Service Robotics

, Volume 9, Issue 3, pp 217–229 | Cite as

Online underwater optical mapping for trajectories with gaps

  • Armagan Elibol
  • Hyunjung Shim
  • Seonghun Hong
  • Jinwhan Kim
  • Nuno Gracias
  • Rafael Garcia
Original Research Paper
  • 275 Downloads

Abstract

This paper proposes a vision-only online mosaicing method for underwater surveys. Our method tackles a common problem in low-cost imaging platforms, where complementary navigation sensors produce imprecise or even missing measurements. Under these circumstances, the success of the optical mapping depends on the continuity of the acquired video stream. However, this continuity cannot be always guaranteed due to the motion blurs or lack of texture, common in underwater scenarios. Such temporal gaps hinder the extraction of reliable motion estimates from visual odometry, and compromise the ability to infer the presence of loops for producing an adequate optical map. Unlike traditional underwater mosaicing methods, our proposal can handle camera trajectories with gaps between time-consecutive images. This is achieved by constructing minimum spanning tree which verifies whether the current topology is connected or not. To do so, we embed a trajectory estimate correction step based on graph theory algorithms. The proposed method was tested with several different underwater image sequences and results were presented to illustrate the performance.

Keywords

Underwater robotics Optical mapping Image mosaicing Environmental monitoring 

References

  1. 1.
    Gleason A, Gracias N, Lirman D, Gintert B, Smith T, Dick M, Reid R (2010) Landscape video mosaic from a mesophotic coral reef. Coral Reefs 29(2):253CrossRefGoogle Scholar
  2. 2.
    GNOM Baby (2015). http://www.gnomrov.com/products/gnom-baby/. Accessed 16 Mar 2016
  3. 3.
  4. 4.
    SeaBotix LBV150-4 MiniROV (2013). http://www.seabotix.com/products/lbv150-4.htm. Accessed 16 Mar 2016
  5. 5.
  6. 6.
    Caballero F, Merino L, Ferruz J, Ollero A (2007) Homography based Kalman filter for mosaic building. applications to UAV position estimation. In: IEEE international conference on robotics and automation, pp 2004–2009Google Scholar
  7. 7.
    Elibol A, Gracias N, Garcia R, Gleason A, Gintert B, Lirman D, Reid PR (2011) Efficient autonomous image mosaicing with applications to coral reef monitoring. In: IROS 2011 workshop on robotics for environmental monitoringGoogle Scholar
  8. 8.
    Garcia-Fidalgo E, Ortiz A, Bonnin-Pascual F, Company JP (2015) A mosaicing approach for vessel visual inspection using a micro-aerial vehicle. In: 2015 IEEE/RSJ international conference on intelligent robots and systems (IROS). IEEE, pp 104–110Google Scholar
  9. 9.
    Garcia R, Puig J, Ridao P, Cufí X (2002) Augmented state Kalman filtering for AUV navigation. In: IEEE international conference on robotics and automation, Washington, D.C., vol 3, pp 4010–4015Google Scholar
  10. 10.
    Eustice R, Pizarro O, Singh H (2004) Visually augmented navigation in an unstructured environment using a delayed state history. In: 2004 IEEE international conference on robotics and automation, 2004. Proceedings. ICRA’04, vol 1. IEEE, pp 25–32Google Scholar
  11. 11.
    Richmond K, Rock SM (2006) An operational real-time large-scale visual mosaicking and navigation system. In: OCEANS 2006. IEEE, pp 1–6Google Scholar
  12. 12.
    Mahon I, Williams SB, Pizarro O, Johnson-Roberson M (2008) Efficient view-based slam using visual loop closures. IEEE Trans Robot 24(5):1002–1014CrossRefGoogle Scholar
  13. 13.
    Kim A, Eustice R (2009) Pose-graph visual slam with geometric model selection for autonomous underwater ship hull inspection. In: IEEE/RSJ international conference on intelligent robots and systems (IROS’09). IEEE, pp 1559–1565Google Scholar
  14. 14.
    Vaganay J, Elkins M, Willcox S, Hover F, Damus R, Desset S, Morash J, Polidoro V (2005) Ship hull inspection by hull-relative navigation and control. In: OCEANS, 2005. Proceedings of MTS/IEEE. IEEE, pp 761–766Google Scholar
  15. 15.
    Bülow H, Birk A (2009) Fast and robust photomapping with an unmanned aerial vehicle (UAV). In: IEEE/RSJ international conference on intelligent robots and systems (IROS’09). IEEE, pp 3368–3373Google Scholar
  16. 16.
    Ferreira F, Veruggio G, Caccia M, Bruzzone G (2012) Real-time optical slam-based mosaicking for unmanned underwater vehicles. Intell Serv Robot 5(1):55–71CrossRefGoogle Scholar
  17. 17.
    Kekec T, Yildirim A, Unel M (2014) A new approach to real-time mosaicing of aerial images. Robot Auton Syst 62(12):1755–1767CrossRefGoogle Scholar
  18. 18.
    Elibol A, Gracias N, Garcia R (2012) Efficient topology estimation for large scale optical mapping. In: Springer tracts in advanced robotics, vol 82. Springer, New YorkGoogle Scholar
  19. 19.
    Elibol A, Gracias N, Garcia R (2010) Augmented state-extended Kalman filter combined framework for topology estimation in large-area underwater mapping. J Field Robot 27(5):656–674CrossRefGoogle Scholar
  20. 20.
    Elibol A, Garcia R, Gracias N (2011) A new global alignment approach for underwater optical mapping. Ocean Eng 38(10):1207–1219CrossRefGoogle Scholar
  21. 21.
    Elibol A, Gracias N, Garcia R (2013) Fast topology estimation for image mosaicing using adaptive information thresholding. Robot Auton Syst 61(2):125–136CrossRefGoogle Scholar
  22. 22.
    Moon H, Tully S, Kantor G, Choset H (2007) Square root iterated Kalman filter for bearing-only SLAM. In: The 4th international conference on ubiquitous robots and ambient intelligence (URAI’07), Republic of KoreaGoogle Scholar
  23. 23.
    Garcia R, Gracias N (2011) Detection of interest points in turbid underwater images. In: OCEANS, IEEE, pp 1–9Google Scholar
  24. 24.
    Yang X, Cheng KT (2014) Local difference binary for ultrafast and distinctive feature description. IEEE Trans Pattern Anal Mach Intell 36(1):188–194CrossRefGoogle Scholar
  25. 25.
    Lowe D (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60(2):91–110CrossRefGoogle Scholar
  26. 26.
    Ila V, Porta JM, Andrade-Cetto J (2010) Information-based compact pose SLAM. IEEE Trans Robot 26(1):78–93CrossRefGoogle Scholar
  27. 27.
    Anderson BDO, Moore JB (1979) Optimal filtering. Prentice-Hall, USAMATHGoogle Scholar
  28. 28.
    Torr P, Zisserman A (1998) Robust computation and parametrization of multiple view relations. In: Sixth international conference on computer vision. IEEE, pp 727–732Google Scholar
  29. 29.
    Haralick RM (1998) Propagating covariance in computer vision. In: 9. Theoretical foundations of computer vision, pp 95–114Google Scholar
  30. 30.
    Gracias N, Negahdaripour S (2005) Underwater mosaic creation using video sequences from different altitudes. In: MTS/IEEE OCEANS conference, Washigton, D.C., pp 1234–1239Google Scholar
  31. 31.
    Escartin J, Garcia R, Delaunoy O, Ferrer J, Gracias N, Elibol A, Cufi X, Neumann L, Fornari DJ, Humpris SE, Renard J (2008) Globally aligned photomosaic of the Lucky Strike hydrothermal vent field (Mid-Atlantic Ridge, 3718.5\(^{\prime }\)N): release of georeferenced data, mosaic construction, and viewing software. Geochem Geophys Geosyst 9(12):Q12,009CrossRefGoogle Scholar
  32. 32.
    Lirman D, Gracias N, Gintert B, Gleason A, Reid RP, Negahdaripour S, Kramer P (2007) Development and application of a video-mosaic survey technology to document the status of coral reef communities. Environ Monitor Assess 159:59–73CrossRefGoogle Scholar
  33. 33.
    Ribas D, Palomeras N, Ridao P, Carreras M, Hernandez E (2007) Ictineu AUV wins the first SAUC-E competition. In: IEEE international conference on robotics and automation, RomeGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Armagan Elibol
    • 1
  • Hyunjung Shim
    • 1
  • Seonghun Hong
    • 2
  • Jinwhan Kim
    • 2
    • 3
  • Nuno Gracias
    • 4
  • Rafael Garcia
    • 4
  1. 1.School of Integrated Technology, Yonsei Institute of Convergence TechnologyYonsei UniversityIncheonRepublic of Korea
  2. 2.Robotics Program, Korea Advanced Institute of Science and Technology (KAIST)DaejeonRepublic of Korea
  3. 3.Department of Mechanical EngineeringKorea Advanced Institute of Science and Technology (KAIST)DaejeonRepublic of Korea
  4. 4.Computer Vision and Robotics Research InstituteUniversity of GironaGironaSpain

Personalised recommendations