Intelligent Service Robotics

, Volume 7, Issue 3, pp 121–131

Toward a user-guided manipulation framework for high-DOF robots with limited communication

  • Calder Phillips-Grafflin
  • Nicholas Alunni
  • Halit Bener Suay
  • Jim Mainprice
  • Daniel Lofaro
  • Dmitry Berenson
  • Sonia Chernova
  • Robert W. Lindeman
  • Paul Oh
Special Issue

Abstract

This paper presents our progress toward a user-guided manipulation framework for high degree-of-freedom robots operating in environments with limited communication. The system we propose consists of three components: (1) a user-guided perception interface that assists the user in providing task-level commands to the robot, (2) planning algorithms that autonomously generate robot motion while obeying relevant constraints, and (3) a trajectory execution and monitoring system which detects errors in execution. We report quantitative experiments performed on these three components and qualitative experiments of the entire pipeline with the PR2 robot turning a valve for the DARPA robotics challenge. We also describe how the framework was ported to the Hubo2+ robot with minimal changes which demonstrates its applicability to different types of robots.

Keywords

Humanoid robotics Manipulation Motion planning  Teleoperation Robot software architecture 

References

  1. 1.
    Almetwally I, Mallem M (2013) Real-time tele-operation and tele-walking of humanoid robot nao using kinect depth camera. In: IEEE International Conference on Networking, Sensing and Control, pp 463–466Google Scholar
  2. 2.
    Argall BD, Chernova S, Veloso M, Browning B (2009) A survey of robot learning from demonstration. Robotics and Autonomous Systems 57(5):469–483CrossRefGoogle Scholar
  3. 3.
    Arkin RC, Balch T (1997) AuRA: Principles and Practice in Review. Journal of Experimental and Theoretical Artificial Intelligence 9:175–189CrossRefGoogle Scholar
  4. 4.
    Berenson D, Srinivasa S, Kuffner J (2011) Task Space Regions: A Framework for Pose-Constrained Manipulation Planning. International Journal of Robotics Research 30(12):1435–1460CrossRefGoogle Scholar
  5. 5.
    Berenson D, Abbeel P, Goldberg K (2012) A robot path planning framework that learns from experience. In: IEEE International Conference on Robotics and Automation, pp 3671–3678, doi:10.1109/ICRA.2012.6224742
  6. 6.
    Besl P, McKay ND (1992) A method for registration of 3-D shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence 14(2):239–256CrossRefGoogle Scholar
  7. 7.
    Biesiadecki J, Leger C, Maimone M (2007) Tradeoffs between directed and autonomous driving on the mars exploration rovers. In: Thrun S, Brooks R, Durrant-Whyte H (eds) Robotics Research, Springer Tracts in Advanced Robotics, vol 28. Springer, Berlin Heidelberg, pp 254–267Google Scholar
  8. 8.
    Burridge R, Hambuchen K (2009) Using prediction to enhance remote robot supervision across time delay. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp 5628–5634Google Scholar
  9. 9.
    Butner S, Ghodoussi M (2003) Transforming a surgical robot for human telesurgery. IEEE Transactions on Robotics and Automation 19(5):818–824CrossRefGoogle Scholar
  10. 10.
    Carbone M, Rizzo L (2010) Dummynet revisited. ACM SIGCOMM Computer Communication Review 40(2):12CrossRefGoogle Scholar
  11. 11.
    Chen TL, Ciocarlie M, Cousins S, Grice P, Hawkins K, Hsiao K, Kemp CC, King CH, Lazewatsky DA, Leeper A, Nguyen H, Paepcke A, Pantofaru C, Smart WD, Takayama L (2012) Robots for humanity: User-centered design for assistive mobile manipulation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp 5434–5435Google Scholar
  12. 12.
    Chitta S, Jones EG, Ciocarlie M, Hsiao K (2012) Perception, Planning, and Execution for Mobile Manipulation in Unstructured Environments. IEEE Robotics and Automation Magazine, Special Issue on Mobile Manipulation 19(2):58–71CrossRefGoogle Scholar
  13. 13.
    Cho BK, Park SS, ho Oh J (2009) Controllers for running in the humanoid robot, HUBO. In: IEEE-RAS International Conference on Humanoid RobotsGoogle Scholar
  14. 14.
    Craighead J, Murphy R, Burke J, Goldiez B (2007) A survey of commercial open source unmanned vehicle simulators. In: IEEE International Conference on Robotics and Automation, pp 852–857Google Scholar
  15. 15.
    Dang H, Jun Y, Oh P, Allen P (2013) Planning complex physical tasks for disaster response with a humanoid robot. In: IEEE International Conference on Technologies for Practical Robot Applications, pp 1–6Google Scholar
  16. 16.
    Dantam N, Stilman M (2012) Robust and efficient communication for real-time multi-process robot software. In: IEEE-RAS International Conference on Humanoid RobotsGoogle Scholar
  17. 17.
    DARPA Tactical Technology Office (2012) DARPA Robotics Challenge Broad Agency Announcement. [Online; accessed 16-Jan-2013]Google Scholar
  18. 18.
    Diankov R, Kuffner J (2008) OpenRAVE: A planning architecture for autonomous robotics. Tech. Rep. CMU-RI-TR-08-34, Robotics Institute, Carnegie Mellon University, Pittsburgh, PennsylvaniaGoogle Scholar
  19. 19.
    Diftler M, Mehling J, Abdallah M, Radford N, Bridgwater L, Sanders AM, Askew RS, Linn D, Yamokoski J, Permenter F, Hargrave B, Piatt R, Savely R, Ambrose R (2011) Robonaut 2 - the first humanoid robot in space. In: IEEE International Conference on Robotics and Automation, pp 2178–2183Google Scholar
  20. 20.
    Ferrell W, Sheridan T (1967) Supervisory control of remote manipulation. IEEE Spectrum 4(10):81–88CrossRefGoogle Scholar
  21. 21.
    Gossow D, Leeper A, Hershberger D, Ciocarlie M (2011) Interactive Markers: 3-D User Interfaces for ROS Applications. IEEE Robotics and Automation Magazine 18(4):14–15CrossRefGoogle Scholar
  22. 22.
    Grey M, Dantam N, Lofaro D, Bobick A, Egerstedt M, Oh P, Stilman M (2013) Multi-process control software for HUBO2 Plus robot. In: IEEE International Conference on Technologies for Practical Robot Applications, pp 1–6Google Scholar
  23. 23.
    Hannaford B (1989) A design framework for teleoperators with kinesthetic feedback. IEEE Transactions on Robotics and Automation 5(4):426–434CrossRefGoogle Scholar
  24. 24.
    Harris A, Conrad J (2011) Survey of popular robotics simulators, frameworks, and toolkits. In: IEEE Southeastcon, pp 243–249Google Scholar
  25. 25.
    Hobbelen D, de Boer T, Wisse M (2008) System overview of bipedal robots flame and tulip: Tailor-made for limit cycle walking. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp 2486–2491Google Scholar
  26. 26.
    Hornung A, Phillips M, Jones E, Bennewitz M, Likhachev M, Chitta S (2012) Navigation in three-dimensional cluttered environments for mobile manipulation. In: IEEE International Conference on Robotics and Automation, pp 423–429Google Scholar
  27. 27.
    Hsiao K, Ciocarlie M, Brook P (2011) Bayesian Grasp Planning. ICRA 2011 Workshop on Mobile Manipulation: Integrating Perception and ManipulationGoogle Scholar
  28. 28.
    Khatib O (1987) A unified approach for motion and force control of robot manipulators: The operational space formulation. IEEE Journal of Robotics and Automation 3(1):43–53CrossRefGoogle Scholar
  29. 29.
    Koenig N, Howard A (2004) Design and use paradigms for Gazebo, an open-source multi-robot simulator. IEEE/RSJ International Conference on Intelligent Robots and Systems 3:2149–2154Google Scholar
  30. 30.
    Leeper A, Hsiao K, Ciocarlie M, Takayama L, Gossow D (2012) Strategies for human-in-the-loop robotic grasping. In: ACM/IEEE International Conference on Human-Robot Interaction, pp 1–8Google Scholar
  31. 31.
    Lofaro DM, Oh P (2012) Humanoid Throws Inaugural Pitch at Major League Baseball Game: Challenges, Approach, Implementation and Lessons Learned. In: IEEE/RSJ International Conference on Intelligent Robots and SystemsGoogle Scholar
  32. 32.
    Lum M, Rosen J, King H, Friedman D, Lendvay T, Wright A, Sinanan M, Hannaford B (2009) Teleoperation in surgical robotics - network latency effects on surgical performance. In: International Conference of the IEEE Engineering in Medicine and Biology Society, pp 6860–6863Google Scholar
  33. 33.
    Luo J, Zhang Y, Hauser K, Park H, Paldhe M, Lee C, Grey M, Stilman M, Oh J, Lee J, Kim I, Oh P (2014) Robust ladder-climbing with a humanoid robot with application to the darpa robotics challenge. In: IEEE International Conference on Robotics and Automation (to appear)Google Scholar
  34. 34.
    Medeiros AAD (1998), A survey of control architectures for autonomous mobile robots. Journal of the Brazilian Computer Society 4Google Scholar
  35. 35.
    Miller A, Allen P (2004) Graspit! a versatile simulator for robotic grasping. IEEE Robotics and Automation Magazine 11(4):110–122CrossRefGoogle Scholar
  36. 36.
    Oestges C, Montenegro-Villacieros B, Vanhoenacker-Janvier D (2009) Modeling propagation into collapsed buildings for radio-localization-based rescue search missions. In: IEEE Antennas and Propagation Society International Symposium, pp 1–4Google Scholar
  37. 37.
    O’Flaherty R, Vieira P, Grey M, Oh P, Bobick A, Egerstedt M, Stilman M (2013) Humanoid robot teleoperation for tasks with power tools. In: IEEE International Conference on Technologies for Practical Robot Applications, pp 1–6Google Scholar
  38. 38.
    Phillips-Grafflin C (2013) Hubo ROS Core. https://github.com/WPI-ARC/hubo_ros_core
  39. 39.
    Phillips-Grafflin C (2013) Unreliable Network Communication Toolkit. https://github.com/WPI-ARC/teleop_toolkit
  40. 40.
    Pirjanian P, Huntsberger T, Trebi-Ollennu A, Aghazarian H, Das H, Joshi S, Schenker P (2000) CAMPOUT: A control architecture for multi-robot planetary outposts. Proceedings of SPIE Symposium on Sensor Fusion and Decentralized Control in Robotic Systems III 4196:221–230CrossRefGoogle Scholar
  41. 41.
    Pordel M, Hellstrom T (2013) Robotics architecture frameworks, available tools and further requirements. UMINFGoogle Scholar
  42. 42.
    Quigley M, Gerkey B, Conley K, Faust J, Foote T, Leibs J, Berger E, Wheeler R, Ng A (2009) ROS: an open-source Robot Operating System. In: ICRA workshop on open source softwareGoogle Scholar
  43. 43.
    Rasmussen C, Yuvraj K, Vallett R, Sohn K, Oh P (2013) Towards functional labeling of utility vehicle point clouds for humanoid driving. In: IEEE International Conference on Technologies for Practical Robot Applications, pp 1–6Google Scholar
  44. 44.
    Rusu RB, Cousins S (2011) 3D is here: Point Cloud Library (PCL). IEEE International Conference on Robotics and Automation. Shanghai, China, pp 1–4Google Scholar
  45. 45.
    Rybski P, Stoeter S, Gini M, Hougen D, Papanikolopoulos N (2001) Effects of limited bandwidth communications channels on the control of multiple robots. IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE 1:369–374Google Scholar
  46. 46.
    Sarabia M, Ros R, Demiris Y (2011) Towards an open-source social middleware for humanoid robots. In: IEEE-RAS International Conference on Humanoid Robots, pp 670–675 Google Scholar
  47. 47.
    Sart D, Mueen A, Najjar W, Keogh E, Niennattrakul V (2010) Accelerating Dynamic Time Warping Subsequence Search with GPUs and FPGAs. In: IEEE International Conference on Data Mining, pp 1001–1006Google Scholar
  48. 48.
    Senin P (2008) Dynamic time warping algorithm review. Information and Computer Science Department University of Hawaii at Manoa Honolulu, USA pp 1–23Google Scholar
  49. 49.
    Skrzypczyliski P (1997) Supervision and teleoperation system for an autonomous mobile robot. IEEE/RSJ International Conference on Intelligent Robots and Systems 2:1177–1181Google Scholar
  50. 50.
    Stilman M (2007) Task constrained motion planning in robot joint space. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, pp 3074–3081Google Scholar
  51. 51.
    Stulp F, Fedrizzi A, Mösenlechner L, Beetz M (2012) Learning and reasoning with action-related places for robust mobile manipulation. Artificial Intelligence Research 43(1):1–42MATHMathSciNetGoogle Scholar
  52. 52.
    Taylor ME, Suay HB, Chernova S (2011) Integrating reinforcement learning with human demonstrations of varying ability. In: The 10th International Conference on Autonomous Agents and Multiagent Systems - Volume 2Google Scholar
  53. 53.
    Yakey J, LaValle SM, Kavraki LE (2001) Randomized Path Planning for Linkages with Closed Kinematics Chains. IEEE Transactions on Robotics and Automation 17(6):951–959CrossRefGoogle Scholar
  54. 54.
    Zheng Y, Wang H, Li S, Liu Y, Orin D, Sohn K, Jun Y, Oh P (2013) Humanoid robots walking on grass, sands and rocks. In: IEEE International Conference on Technologies for Practical Robot Applications, pp 1–6Google Scholar
  55. 55.
    Zucker M, Jun Y, Killen B, Kim TG, Oh P (2013) Continuous trajectory optimization for autonomous humanoid door opening. In: IEEE International Conference on Technologies for Practical Robot Applications, pp 1–5Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Calder Phillips-Grafflin
    • 1
  • Nicholas Alunni
    • 1
  • Halit Bener Suay
    • 1
  • Jim Mainprice
    • 1
  • Daniel Lofaro
    • 2
  • Dmitry Berenson
    • 1
  • Sonia Chernova
    • 1
  • Robert W. Lindeman
    • 1
  • Paul Oh
    • 2
  1. 1.Worcester Polytechnic InstituteWorcesterUSA
  2. 2.Drexel UniversityPhiladelphiaUSA

Personalised recommendations