Intelligent Service Robotics

, Volume 7, Issue 2, pp 103–119 | Cite as

Iterative design of a semi-autonomous social telepresence robot research platform: a chronology

  • Katherine M. Tsui
  • Adam Norton
  • Daniel J. Brooks
  • Eric McCann
  • Mikhail S. Medvedev
  • Jordan Allspaw
  • Sompop Suksawat
  • James M. Dalphond
  • Michael Lunderville
  • Holly A. Yanco
Special Issue


Our research focuses on how a telepresence robot operator, the people with the robot, and the robot itself collaborate so that the operator reaches his/her intended destination. Our research requires higher levels of autonomous navigation so that the robot can, for example, go to a specified destination and follow a person. However, commercial telepresence robots are primarily teleoperated, and only a few provide assisted navigation around obstacles. Our system must include sensors and processing to enable these capabilities. We present the chronology of our iterative design for augmenting two VGo Communications’ VGo robots, Hugo and Margo, over a period of 3 years. We detail the requirements and design constraints encountered while developing our telepresence robot platforms.


Human–robot interaction Remote presence  Embodied video conferencing 



We would like to thank VGo Communications for their support. Design and software contributions have also been made by Munjal Desai, Kelsey Flynn, Michael Coates, Amelia McHugh, Jamal Grant, Sean McSheehy, Brian Carlson, Brendan Haughland, Xavier Guay, Vicki Crosson, and Bradley Wall of UMass Lowell. Christopher Granz, formerly of UMass Lowell, designed the v1.0 printed circuit boards.


  1. 1.
    Bartelmus C (2011) LIRC - Linux infrared remote control. Accessed Sept 2008
  2. 2.
    Beagleboardorg (2011) BeagleBoard-xM product details. Accessed Mar 2011
  3. 3.
    Blow M, Dautenhahn K, Appleby A, Nehaniv C, Lee D (2006) The art of designing robot faces: dimensions for human-robot interaction. In: Proceedings of International Conference on HRI, ACM/IEEE, pp 331–332Google Scholar
  4. 4.
    Brawner S (2013) SolidWorks to URDF exporter—ROS wiki. Accessed Aug 2013
  5. 5.
    Business Wire (2013) iRobot launches Ava 500 video collaboration robot with Cisco TelePresence. Accessed Jun 2013
  6. 6.
    Carruthers G (2009) Is the body schema sufficient for the sense of embodiment? An alternative to de Vignemont’s model. Philos Psychol 22(2):123–142CrossRefGoogle Scholar
  7. 7.
    Coltin B, Biswas J, Pomerleau D, Veloso M (2012) Effective semi-autonomous telepresence. RoboCup 2011: Robot Soccer World Cup XV, pp 365–376Google Scholar
  8. 8.
    CompuLab (2012) fit-PC2 specifications. Accessed Nov 2012
  9. 9.
    Desai M, Tsui K, Yanco H, Uhlik C (2011) Essential features of telepresence robots. In: Proceedings of IEEE Conference on technologies for practical robot applications (TePRA)Google Scholar
  10. 10.
    DiSalvo C, Gemperle F, Forlizzi J, Kiesler S (2002) All robots are not created equal: the design and perception of humanoid robot heads. In: Conference on designing interactive systems: processes, practices, methods, and techniques, ACM, pp 321–326Google Scholar
  11. 11.
    Evercool USA (2010) FAN-EC8010LL05E. Accessed Aug 2012
  12. 12.
    Fong T, Nourbakhsh I, Dautenhahn K (2003) A survey of socially interactive robots. Robot Auton Syst 42(3):143–166CrossRefzbMATHGoogle Scholar
  13. 13.
    Gerkey BP (2011) amcl—ROS wiki. Accessed Aug 2012
  14. 14.
    Gerkey BP, Leibs J, Gassend B (2011) hokuyo\_node—ROS wiki. Accessed Jul 2012
  15. 15.
    Goetz J, Kiesler S, Powers A (2003) Matching robot appearance and behavior to tasks to improve human-robot cooperation. In: IEEE International Workshop On Robot and Human Interactive Communication (ROMAN), pp 55–60Google Scholar
  16. 16.
    Gonzalez-Jorge H, Riveiro B, Vazquez-Fernandez E, Martínez-Sánchez J, Arias P (2013) Metrological evaluation of Microsoft Kinect and Asus Xtion sensors. MeasurementGoogle Scholar
  17. 17.
    Grisetti G, Stachniss C, Burgard W, Gerkey B (2012) GMapping—ROS wiki. Accessed Dec 2012
  18. 18.
    Hicks J (2013) iRobot’s new Ava 500 puts robotics in heart of the enterprise. Accessed Jun 2013
  19. 19.
    Ideas On Board (2012) Linux UVC driver and tools—FAQ. Accessed Aug 2013
  20. 20.
    InTouch Health (2013) InTouch Health receives FDA clearance for the RP-VITA remote presence robot. Press release,
  21. 21.
    iRobot Corporation (2011) Ava mobile robotics platform. Accessed Oct 2012
  22. 22.
    Jay GT, Crick C (2012) gscam—ROS wiki. Accessed Jul 2012
  23. 23.
    Keyes B, Casey R, Yanco HA, Maxwell BA, Georgiev Y (2006) Camera placement and multi-camera fusion for remote robot operation. In: Proceedings of the IEEE international workshop on safety, security and rescue robotics, pp 22–24Google Scholar
  24. 24.
    Kirbis DS (2013) Logitech c920 and c910 fields of view for RGBDtoolkit. Accessed Feb 2014
  25. 25.
    Koenig N, Howard A (2004) Design and use paradigms for Gazebo, an open-source multi-robot simulator. In: Proceedings of IEEE/RSJ international conference on intelligent robots and systems, pp 2149–2154Google Scholar
  26. 26.
    Lee M, Forlizzi J, Rybski P, Crabbe F, Chung W, Finkle J, Glaser E, Kiesler S (2009) The Snackbot: documenting the design of a robot for long-term human-robot interaction. In: Proceedings of international conference on HRI, ACM/IEEE, pp 7–14Google Scholar
  27. 27.
    Leibs J, Gassend B (2011) microstrain\_3dmgx2\_imu - ROS wiki. Accessed Jul 2012
  28. 28.
    Mace J (2013) Rosbridge—ROS wiki. Accessed Aug 2013
  29. 29.
    Macharet D, Florencio D (2012) A collaborative control system for telepresence robots. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and SystemsGoogle Scholar
  30. 30.
    Michaud F, Boissy P, Labonté D, Brière S, Perreault K, Corriveau H, Grant A, Lauria M, Cloutier R, Roux M (2010) Exploratory design and evaluation of a homecare teleassistive mobile robotic system. Mechatronics 20(7):751–766CrossRefGoogle Scholar
  31. 31.
    Mine MR, Brooks Jr FP, Sequin CH (1997) Moving objects in space: Exploiting proprioception in virtual-environment interaction. In: Proceedings of the 24th annual conference on computer graphics and interactive techniques, ACM Press/Addison-Wesley Publishing Co., pp 19–26Google Scholar
  32. 32.
    Nielsen J (1994) Enhancing the explanatory power of usability heuristics. In: Proceedings of SIGCHI conference on human factors in computing systems, pp 152–158Google Scholar
  33. 33.
    Park J, Kuipers B (2011) A smooth control law for graceful motion of differential wheeled mobile robots in 2D environment. In: International conference on robotics and automation (ICRA), IEEE, pp 4896–4902Google Scholar
  34. 34.
    Park SJ, Han JH, Kang BH, Shin KC (2011) Teaching assistant Robot, Robosem, in English class and practical issues for its diffusion. In: Workshop on advanced robotics and its social impacts (ARSO), IEEE, pp 8–11Google Scholar
  35. 35.
    Parlitz C, Hägele M, Klein P, Seifert J, Dautenhahn K (2008) Care-O-bot 3 - Rationale for human-robot interaction design. In: International symposium on robotics (ISR), pp 275–280Google Scholar
  36. 36.
    Quigley M, Gerkey B, Conley K, Faust J, Foote T, Leibs J, Berger E, Wheeler R, Ng A (2009) ROS: an open-source robot operating system. ICRA workshop on open source software.Google Scholar
  37. 37.
    Quigley M, Gerkey B, Watts K, Gassend B (2012) joy—ROS wiki. Accessed Aug 2012
  38. 38.
    Rabaud V (2012) openni\_launch—ROS wiki. Accessed Aug 2012
  39. 39.
    Riano L, Burbridge C, McGinnity T (2011) A study of enhanced robot autonomy in telepresence. In: Proceedings of artificial intelligence and cognitive systemsGoogle Scholar
  40. 40.
    Schaefer K, Sanders T, Yordon R, Billings D, Hancock P (2012) Classification of robot form: factors predicting perceived trustworthiness. In: Proceedings of human factors and ergonomics society annual meeting, vol 56. SAGE Publications, New York, pp 1548–1552Google Scholar
  41. 41.
    Shneiderman B (1993) Direct manipulation: a step beyond programming languages. Sparks of innovation in human-computer interaction, pp 17–37Google Scholar
  42. 42.
    Simonite T (2010) The new, more awkward you. MIT Technology Review, Accessed Oct 2012
  43. 43.
    Szczys M (2011) Etching panel faces on the cheap. Accessed Aug 2012
  44. 44.
    Takayama L (2011) Toward making robots invisible-in-use. New frontiers in human-robot interaction 2Google Scholar
  45. 45.
    Takayama L, Marder-Eppstein E, Harris H, Beer J (2011) Assisted driving of a mobile remote presence system: system design and controlled user evaluation. In: International conference on robotics and automation (ICRA), pp 1883–1889Google Scholar
  46. 46.
    Tsui K, Yanco H (2013) Design guidelines and challenges for social interaction using mobile telepresence robots. Rev Hum Fact Ergon Teleoperations 9(1):228–302Google Scholar
  47. 47.
    Tsui K, Desai M, Yanco H, Uhlik C (2011) Exploring use cases for telepresence robots. In: Proceedings of international conference on HRI, ACM/IEEEGoogle Scholar
  48. 48.
    Tsui K, Desai M, Yanco H, Uhlik C (2011) Telepresence robots roam the halls of my office building. In: Proceedings of HRI workshop on social robotic telepresenceGoogle Scholar
  49. 49.
    Tsui K, Norton A, Brooks D, Yanco H, Kontak D (2011) Designing telepresence robot systems for use by people with special needs. In: Proceedings of international symposium on quality of life technologies 2011: intelligent systems for better living, held in conjunction with RESNA 2011 as part of FICCDATGoogle Scholar
  50. 50.
    Tsui K, Flynn K, McHugh A, Yanco H, Kontak D (2013) Designing speech-based interfaces for telepresence robots for people with disabilities. In: Proceedings of IEEE conference on rehabilitation robotics (ICORR)Google Scholar
  51. 51.
    Tsui KM, McCann E, McHugh A, Flynn K, Yanco HA, Kontak D, Drury JL (2014) Designing telepresence robot navigation for people with disabilities. International journal in intelligent computing and cybernetics (IJICC), special issue on robotic rehabilitation and assistive technologies (to appear)Google Scholar
  52. 52.
    VGo Communications (2012) Frequently asked questions | VGo robotic telepresence for healthcare, education and business. Accessed Aug 2012
  53. 53.
    VGo Communications (2012) Software releases | VGo robotic telepresence for healthcare, education and business. Accessed Aug 2012
  54. 54.
    VGo Communications (2012) VGo user guide v1.5.0. Manual, Accessed Aug 2012
  55. 55.
    Voshell M, Woods D, Phillips F (2005) Overcoming the keyhole in human-robot coordination: simulation and evaluation. In: Proceedings of human factors and ergonomics society annual meeting, vol 49. SAGE Publications, New York, pp 442–446Google Scholar
  56. 56.
    Vozar S, Tilbury D (2013) Improving teleoperated robot speed using optimization techniques. In: 8th ACM/IEEE international conference on human-robot interaction (HRI), IEEE, pp 249–250Google Scholar
  57. 57.
    Woods S, Dautenhahn K, Schulz J (2004) The design space of robots: investigating children’s views. International ROMAN Workshop, IEEE, pp 47–52Google Scholar
  58. 58.
    Yun S, Shin J, Kim D, Kim CG, Kim M, Choi MT (2011) EngKey: tele-education robot. In: Social robotics, Springer, Berlin, pp 142–152Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Katherine M. Tsui
    • 1
  • Adam Norton
    • 1
  • Daniel J. Brooks
    • 1
  • Eric McCann
    • 1
  • Mikhail S. Medvedev
    • 1
  • Jordan Allspaw
    • 1
  • Sompop Suksawat
    • 2
  • James M. Dalphond
    • 1
  • Michael Lunderville
    • 1
  • Holly A. Yanco
    • 1
  1. 1.Department of Computer ScienceUniversity of Massachusetts LowellLowellUSA
  2. 2.Department of Computer ScienceWorcester State UniversityWorcesterUSA

Personalised recommendations