Intelligent Service Robotics

, Volume 3, Issue 4, pp 245–262 | Cite as

Comprehensive Automation for Specialty Crops: Year 1 results and lessons learned

  • Sanjiv Singh
  • Marcel Bergerman
  • Jillian Cannons
  • Benjamin Grocholsky
  • Bradley Hamner
  • German Holguin
  • Larry Hull
  • Vincent Jones
  • George Kantor
  • Harvey Koselka
  • Guiqin Li
  • James Owen
  • Johnny Park
  • Wenfan Shi
  • James Teza
Special Issue

Abstract

Comprehensive Automation for Specialty Crops is a project focused on the needs of the specialty crops sector, with a focus on apples and nursery trees. The project’s main thrusts are the integration of robotics technology and plant science; understanding and overcoming socio-economic barriers to technology adoption; and making the results available to growers and stakeholders through a nationwide outreach program. In this article, we present the results obtained and lessons learned in the first year of the project with a reconfigurable mobility infrastructure for autonomous farm driving. We then present sensor systems developed to enable three real-world agricultural applications—insect monitoring, crop load scouting, and caliper measurement—and discuss how they can be deployed autonomously to yield increased production efficiency and reduced labor costs.

Keywords

Specialty crops Reconfigurable mobility Crop intelligence Insect monitoring Crop load estimation Caliper measurement 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bishop CM (2006) Pattern recognition and machine learning. Springer, BerlinMATHGoogle Scholar
  2. 2.
    Delwiche M, Vorhees J (2003) Optoelectronic system for counting and sizing field-grown deciduous trees. Trans ASABE 46(3): 877–882Google Scholar
  3. 3.
    Fairfield N, Kantor G, Wettergreen D (2007) Real-time SLAM with octree evidence grids for exploration in underwater tunnels. J Field Robot 24(1): 3–22CrossRefGoogle Scholar
  4. 4.
    Hamner B, Singh S, Roth S, Takahashi T (2008) An efficient system for combined route traversal and collision avoidance. Autonom Robots 24(4): 365–385CrossRefGoogle Scholar
  5. 5.
    Henning JG, Radtke PJ (2006) Detailed stem measurements of standing trees from ground-based scanning lidar. For Sci 52(1): 67–80Google Scholar
  6. 6.
    Illingworth J, Kittler J (1988) A survey of the Hough transform. Comput Vis Graph Image Process 44(1): 87–116CrossRefGoogle Scholar
  7. 7.
    Leonard JJ, Durrant-Whyte HF (1991) Simultaneous map building and localization for an autonomous mobile robot. In: IEEE/RSJ international workshop on intelligent robots and systems, pp 1442–1447, November 1991Google Scholar
  8. 8.
    Pollack S, Perez A (2008) Fruit and tree nuts situation and outlook yearbook 2008. USDA Economic Research Service, p 29Google Scholar
  9. 9.
    Rosenfeld A, Kak AC (1982) Digital picture processing. Academic Press, New YorkGoogle Scholar
  10. 10.
    Singh S, Baugher T, Bergerman M, Grocholsky B, Harper J, Hoheisel G-A, Hull L, Jones V, Kantor G, Koselka H, Lewis K, Messner W, Ngugi H, Owen J, Park J, Seavert C (2009) Automation for specialty crops: a comprehensive strategy, current results, and future goals. Paper presented at the 4th IFAC international workshop on bio-robotics, information technology, and intelligent control for bioproduction systems, Champaign, IL, September 2009Google Scholar
  11. 11.
    Suarez L, Zarco-Tejada PJ, Sepulcre-Canto G, Perez-Priego O, Miler JR, Jimenez-Munoz JC, Sobrino J (2008) Assessing canopy PRI for water stress detection with diurnal airborne imagery. Remote Sens Environ 112: 560–575CrossRefGoogle Scholar
  12. 12.
    Tully S, Moon H, Kantor G, Choset H (2008) Iterated filters for bearing-only SLAM. In: IEEE international conference on robotics and automation, pp 1442–1448, May 2008Google Scholar
  13. 13.
    Upchurch BL, Anger WC, Vass G, Glenn DM (1992) Ultrasonic tree Caliper. Appl Eng Agricult 8(5): 711–714Google Scholar
  14. 14.
    US Apple (2007) U.S. Apple Growers Could Lose $572.2 Million if the Farm Labor Supply Continues to Decline. http://www.usapple.org/industry/aglabor/econ_impact.pdf
  15. 15.
    USDA (2009) 2007 Census of Agriculture, United States, Summary and State Data, p 9Google Scholar
  16. 16.
    USDA (2007) Engineering solutions for specialty crop challenges, workshop report, Arlington, VA, April 2007. http://www.csrees.usda.gov/nea/ag_systems/pdfs/specialty_crops_engineering.pdf

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Sanjiv Singh
    • 1
  • Marcel Bergerman
    • 1
  • Jillian Cannons
    • 2
  • Benjamin Grocholsky
    • 1
  • Bradley Hamner
    • 1
  • German Holguin
    • 3
  • Larry Hull
    • 4
  • Vincent Jones
    • 5
  • George Kantor
    • 1
  • Harvey Koselka
    • 2
  • Guiqin Li
    • 3
  • James Owen
    • 6
  • Johnny Park
    • 3
  • Wenfan Shi
    • 1
  • James Teza
    • 1
  1. 1.Carnegie Mellon UniversityPittsburghUSA
  2. 2.Vision RoboticsSan DiegoUSA
  3. 3.Purdue UniversityWest LafayetteUSA
  4. 4.Pennsylvania State UniversityBiglervilleUSA
  5. 5.Washington State UniversityWenatcheeUSA
  6. 6.Oregon State UniversityAuroraUSA

Personalised recommendations