Skip to main content
Log in

Sugarcane cultivation altered soil nitrogen cycling microbial processes and decreased nitrogen bioavailability in tropical Australia

  • Soils, Sec 5 • Soil and Landscape Ecology • Research Article
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

Land use conversion of natural ecosystems to intensive agriculture can alter soil biogeochemical processes and nutrient cycling, while increasing potential for land degradation. The disturbance of soil microbial community, due to land use conversion, may also lead to detrimental effects on soil ecosystem processes and services. Therefore, the objective of this study was to examine how sugarcane cultivation alters soil nitrogen (N) bioavailability and associated microbial processes in tropical Australia.

Methods

Two adjacent paired sites (native forest vs sugarcane cultivation for 78 years; pasture vs sugarcane cultivation for 78 years) were selected and five composite surface soils (0–10 cm) were collected from each site.

Results

Sugarcane cultivations decreased total organic carbon (OC; 45–48%), total N (51–54%), and total phosphorus (P; 26–37%) pools compared with native forest and pasture. Total mineral N (NH4+-N + NO3-N), dissolved organic C and N contents and cumulative aerobic respiration were also lower in sugarcane than native forest and pasture lands. Reduction in soil microbial biomass (60%) following long-term conversion to sugarcane has resulted in higher metabolic quotient (qCO2) and lower C use efficiency, indicating higher level of environmental stresses in sugarcane sites. Among N cycling-associated genes, only narG showed significantly higher abundance in sugarcane than pasture land use, while narG, nosZ, nirK and nirS genes had significantly lower copy numbers in sugarcane compared with native forest.

Conclusion

Sugarcane cultivation decreased soil health and biochemical quality, N bioavailability, and N cycling processes in tropical climate of this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Armour JD, Nelson PN, Daniells JW, Rasiah V, Inman-Bamber NG (2013) Nitrogen leaching from the root zone of sugarcane and bananas in the humid tropics of Australia. Agric Ecosyst Environ 180:68–78

    Article  CAS  Google Scholar 

  • Batlle-Bayer L, Batjes NH, Bindraban PS (2010) Changes in organic carbon stocks upon land use conversion in the Brazilian Cerrado: a review. Agric Ecosyst Environ 137(1–2):47–58

    Article  CAS  Google Scholar 

  • Bell T, Newman JA, Silverman BW, Turner SL, Lilley AK (2005) The contribution of species richness and composition to bacterial services. Nature 436(7054):1157–1160

    Article  ADS  CAS  PubMed  Google Scholar 

  • Brackin R, Robinson N, Lakshmanan P, Schmidt S (2014) Soil microbial responses to labile carbon input differ in adjacent sugarcane and forest soils. Soil Res 52(3):307–316

    Article  CAS  Google Scholar 

  • Chen CR, Xu ZH, Mathers NJ (2004) Soil carbon pools in adjacent natural and plantation forests of subtropical Australia. Soil Sci Soc Am J 68(1):282–291

    Article  CAS  Google Scholar 

  • Cherubin MR, Franco AL, Cerri CE, Karlen DL, Pavinato PS, Rodrigues M, Davies CA, Cerri CC (2016) Phosphorus pools responses to land-use change for sugarcane expansion in weathered Brazilian soils. Geoderma 265:27–38

    Article  ADS  CAS  Google Scholar 

  • Da Silva Oliveira DM, Paustian K, Cotrufo MF, Fiallos AR, Cerqueira AG, Cerri CEP (2017) Assessing labile organic carbon in soils undergoing land use change in Brazil: a comparison of approaches. Ecol Indic 72:411–419

    Article  Google Scholar 

  • De Figueiredo EB, Panosso AR, Reicosky DC, La Scala Jr N (2015) Short-term CO2-C emissions from soil prior to sugarcane (Saccharum spp.) replanting in southern Brazil. GCB Bioenergy 7(2):316–327

    Article  Google Scholar 

  • De Oliveira Bordonal R, Lal R, Ronquim CC, De Figueiredo EB, Carvalho JLN, Maldonado W Jr, Milori DMBP, La Scala Jr N (2017) Changes in quantity and quality of soil carbon due to the land-use conversion to sugarcane (Saccharum officinarum) plantation in southern Brazil. Agric Ecosyst Environ 240:54–65

    Article  Google Scholar 

  • Ding L, Zhou J, Li Q, Tang J, Chen X (2022) Effects of land-use type and flooding on the soil microbial community and functional genes in reservoir riparian zones. Microb Ecol 83(2):393–407

    Article  ADS  CAS  PubMed  Google Scholar 

  • Don A, Schumacher J, Freibauer A (2011) Impact of tropical land-use change on soil organic carbon stocks–a meta-analysis. Glob Chang Biol 17(4):1658–1670

    Article  ADS  Google Scholar 

  • Dos Santos CA, Rezende CDP, Pinheiro EFM, Pereira JM, Alves BJ, Urquiaga S, Boddey RM (2019) Changes in soil carbon stocks after land-use change from native vegetation to pastures in the Atlantic forest region of Brazil. Geoderma 337:394–401

    Article  ADS  Google Scholar 

  • DuPont ST, Culman SW, Ferris H, Buckley DH, Glover JD (2010) No-tillage conversion of harvested perennial grassland to annual cropland reduces root biomass, decreases active carbon stocks, and impacts soil biota. Agric Ecosyst Environ 137(1–2):25–32

    Article  CAS  Google Scholar 

  • Duhan A, Oliver DP, Rezaei Rashti M, Du J, Kookana RS (2020) Organic waste from sugar mills as a potential soil ameliorant to minimise herbicide runoff to the Great Barrier Reef. Sci Total Environ 713:136640

    Article  ADS  CAS  PubMed  Google Scholar 

  • Foley JA, Ramankutty N, Brauman KA, Cassidy ES, Gerber JS, Johnston M, Mueller ND, O’Connell C, Ray DK, West PC, Balzer C (2011) Solutions for a cultivated planet. Nature 478(7369):337–342

    Article  ADS  CAS  PubMed  Google Scholar 

  • Franco AL, Cherubin MR, Pavinato PS, Cerri CE, Six J, Davies CA, Cerri CC (2015) Soil carbon, nitrogen and phosphorus changes under sugarcane expansion in Brazil. Sci Total Environ 515:30–38

    Article  ADS  PubMed  Google Scholar 

  • Gava CAT, Giongo V, Signor D, Fernandes-Júnior PI (2022) Land-use change alters the stocks of carbon, nitrogen, and phosphorus in a Haplic Cambisol in the Brazilian semi-arid region. Soil Use Manag 38(1):953–963

    Article  Google Scholar 

  • Guimaraes MDF, Oliveira JF, Telles TS, Machado W, Barbosa G, Tavares Filho J (2018) Soil aggregation and carbon stabilization in burn and no-burn sugarcane management systems. An Acad Bras Cienc 90:2459–2467

    Article  CAS  PubMed  Google Scholar 

  • Hermans SM, Taylor M, Grelet G, Curran-Cournane F, Buckley HL, Handley KM, Lear G (2020) From pine to pasture: land use history has long-term impacts on soil bacterial community composition and functional potential. FEMS Microbiol Ecol 96(4):fiaa041

    Article  CAS  PubMed  Google Scholar 

  • Jones CM, Graf DRH, Bru D, Philippot L, Hallin S (2013) The unaccounted yet abundant nitrous oxide-reducing microbial community: a potential nitrous oxide sink. ISME J 7:417–426

    Article  CAS  PubMed  Google Scholar 

  • Kaschuk G, Alberton O, Hungria M (2010) Three decades of soil microbial biomass studies in Brazilian ecosystems: lessons learned about soil quality and indications for improving sustainability. Soil Biol Biochem 42(1):1–13

    Article  CAS  Google Scholar 

  • Kotowska MM, Leuschner C, Triadiati T, Meriem S, Hertel D (2015) Quantifying above-and belowground biomass carbon loss with forest conversion in tropical lowlands of Sumatra (Indonesia). Glob Chang Biol 21(10):3620–3634

    Article  ADS  PubMed  Google Scholar 

  • Lan ZM, Chen CR, Rezaei Rashti M, Yang H, Zhang DK (2019) Linking feedstock and application rate of biochars to N2O emission in a sandy loam soil: potential mechanisms. Geoderma 337:880–892

    Article  ADS  CAS  Google Scholar 

  • Leite MV, Bobuska L, Espindola SP, Campos MR, Azevedo LC, Ferreira AS (2018) Modeling of soil phosphatase activity in land use ecosystems and topsoil layers in the Brazilian Cerrado. Ecol Modell 385:182–188

    Article  CAS  Google Scholar 

  • Li D, Liu J, Chen H, Zheng L, Wang K (2018) Soil gross nitrogen transformations in responses to land use conversion in a subtropical karst region. J Environ Manage 212:1–7

    Article  CAS  PubMed  Google Scholar 

  • Linnenluecke MK, Nucifora N, Thompson N (2018) Implications of climate change for the sugarcane industry. Wiley Interdiscip Rev Clim Chang 9(1):e498

    Article  Google Scholar 

  • Liu X, Chen C, Wang W, Hughes J, Lewis T, Hou E, Shen J (2013) Soil environmental factors rather than denitrification gene abundance control N2O fluxes in a wet sclerophyll forest with different burning frequency. Soil Biol Biochem 57:292–300

    Article  CAS  Google Scholar 

  • Liu X, Li L, Wang Q, Mu S (2018a) Land-use change affects stocks and stoichiometric ratios of soil carbon, nitrogen, and phosphorus in a typical agro-pastoral region of northwest China. JSS 18(11):3167–3176

    CAS  Google Scholar 

  • Liu XY, Milla R, Granshaw T, Van Zwieten L, Rezaei Rashti M, Esfandbod M, Chen C (2021) Responses of soil nutrients and microbial activity to the mill-mud application in a compaction-affected sugarcane field. Soil Res 60(4):385–398

    Article  Google Scholar 

  • Liu XY, Rezaei Rashti M, Dougall A, Esfandbod M, Van Zwieten L, Chen CR (2018b) Subsoil application of compost improved sugarcane yield through enhanced supply and cycling of soil labile organic carbon and nitrogen in an acidic soil at tropical Australia. Soil Tillage Res 180:73–81

    Article  Google Scholar 

  • Liu XY, Rezaei Rashti M, Esfandbod M, Powell B, Chen CR (2018c) Liming improves soil microbial growth, but trash blanket placement increases labile carbon and nitrogen availability in a sugarcane soil of subtropical Australia. Soil Res 56:235–243

    Article  Google Scholar 

  • Liu XY, Rezaei Rashti M, Van Zwieten L, Esfandbod M, Rose MT, Chen CR (2023) Microbial carbon functional responses to compaction and moisture stresses in two contrasting Australian soils. Soil Tillage Res 234:105825

    Article  Google Scholar 

  • Liu Z, Shao MA, Wang Y (2011) Effect of environmental factors on regional soil organic carbon stocks across the Loess Plateau region, China. Agric Ecosyst Environ 142(3–4):184–194

    Article  Google Scholar 

  • Louca S, Parfrey LW, Doebeli M (2016) Decoupling function and taxonomy in the global ocean microbiome. Science 353(6305):1272–1277

    Article  ADS  CAS  PubMed  Google Scholar 

  • Louca S, Polz MF, Mazel F, Albright MB, Huber JA, O’Connor MI, Ackermann M, Hahn AS, Srivastava DS, Crowe SA, Doebeli M (2018) Function and functional redundancy in microbial systems. Nat Ecol Evol 2(6):936–943

    Article  PubMed  Google Scholar 

  • Luce MS, Whalen JK, Ziadi N, Zebarth BJ, Chantigny MH (2014) Labile organic nitrogen transformations in clay and sandy-loam soils amended with 15N-labelled faba bean and wheat residues. Soil Biol Biochem 68:208–218

    Article  Google Scholar 

  • Maranguit D, Guillaume T, Kuzyakov Y (2017) Land-use change affects phosphorus fractions in highly weathered tropical soils. CATENA 149:385–393

    Article  CAS  Google Scholar 

  • McKay B, Sauer S, Richardson B, Herre R (2016) The political economy of sugarcane flexing: initial insights from Brazil, Southern Africa and Cambodia. J Peasant Stud 43(1):195–223

    Article  Google Scholar 

  • Mello FF, Cerri CE, Davies CA, Holbrook NM, Paustian K, Maia SM, Galdos MV, Bernoux M, Cerri CC (2014) Payback time for soil carbon and sugarcane ethanol. Nat Clim Change 4(7):605–609

    Article  ADS  CAS  Google Scholar 

  • Mendes LW, Tsai SM, Navarrete AA, De Hollander M, van Veen JA, Kuramae EE (2015) Soil-borne microbiome: linking diversity to function. Microb Ecol 70(1):255–265

    Article  ADS  CAS  PubMed  Google Scholar 

  • Miller RO (1998) Nitric-perchloric acid wet digestion in an open vessel. In: Handbook of Reference Methods for Plant Analysis, pp 57–61

  • Miura T, Niswati A, Swibawa IG, Haryani S, Gunito H, Arai M, Yamada K, Shimano S, Kaneko N, Fujie K (2016) Shifts in the composition and potential functions of soil microbial communities responding to a no-tillage practice and bagasse mulching on a sugarcane plantation. Biol Fertil Soils 52(3):307–322

    Article  CAS  Google Scholar 

  • Nacke H, Fischer C, Thürmer A, Meinicke P, Daniel R (2014) Land use type significantly affects microbial gene transcription in soil. Microb Ecol 67(4):919–930

    Article  ADS  CAS  PubMed  Google Scholar 

  • Nasto MK, Osborne BB, Lekberg Y, Asner GP, Balzotti CS, Porder S, Taylor PG, Townsend AR, Cleveland CC (2017) Nutrient acquisition, soil phosphorus partitioning and competition among trees in a lowland tropical rain forest. New Phytol 214:1506–1517

    Article  CAS  PubMed  Google Scholar 

  • Poeplau C, Don A, Vesterdal L, Leifeld J, Van Wesemael BAS, Schumacher J, Gensior A (2011) Temporal dynamics of soil organic carbon after land-use change in the temperate zone–carbon response functions as a model approach. Glob Chang Biol 17(7):2415–2427

    Article  ADS  Google Scholar 

  • Prosser JI, Hink L, Gubry-Rangin C, Nicol GW (2020) Nitrous oxide production by ammonia oxidizers: physiological diversity, niche differentiation and potential mitigation strategies. Glob Chang Biol 26:103–118

    Article  ADS  PubMed  Google Scholar 

  • Qin Z, Dunn JB, Kwon H, Mueller S, Wander MM (2016) Soil carbon sequestration and land use change associated with biofuel production: empirical evidence. GCB Bioenergy 8(1):66–80

    Article  CAS  Google Scholar 

  • Rayment GE, Lyons DJ (2011) Soil chemical methods. CSIRO publishing, Australasia

    Google Scholar 

  • Rezaei Rashti M, Esfandbod M, Phillips IR, Chen CR (2019) Biochar amendment and water stress alter rhizosphere carbon and nitrogen budgets in bauxite-processing residue sand under rehabilitation. J Environ Manage 230:446–455

    Article  CAS  PubMed  Google Scholar 

  • Rezaei Rashti M, Wang WJ, Harper SM, Moody PW, Chen CR, Ghadiri H, Reeves SH (2015) Strategies to mitigate greenhouse gas emissions in intensively managed vegetable cropping systems in subtropical Australia. Soil Res 53:475–484

    Article  Google Scholar 

  • Song Z, Wang J, Liu G, Zhang C (2019) Changes in nitrogen functional genes in soil profiles of grassland under long-term grazing prohibition in semiarid area. Sci Total Environ 673:92–101

    Article  ADS  CAS  PubMed  Google Scholar 

  • Stone MM, Plante AF (2014) Changes in phosphatase kinetics with soil depth across a variable tropical landscape. Soil Biol Biochem 71:61–67

    Article  CAS  Google Scholar 

  • Thorburn PJ, Biggs JS, Attard SJ, Kemei J (2011) Environmental impacts of irrigated sugarcane production: nitrogen lost through runoff and leaching. Agric Ecosyst Environ 144(1):1–12

    Article  CAS  Google Scholar 

  • Tosi M, Correa OS, Soria MA, Vogrig JA, Sydorenko O, Montecchia MS (2016) Land-use change affects the functionality of soil microbial communities: a chronosequence approach in the Argentinian Yungas. Appl Soil Ecol 108:118–127

    Article  Google Scholar 

  • Vinhal-Freitas IC, Correa GF, Wendling B, Bobuska L, Ferreira AS (2017) Soil textural class plays a major role in evaluating the effects of land use on soil quality indicators. Ecol Indic 74:182–190

    Article  CAS  Google Scholar 

  • Wood JR, Holdaway RJ, Orwin KH, Morse C, Bonner KI, Davis C, Bolstridge N, Dickie IA (2017) No single driver of biodiversity: divergent responses of multiple taxa across land use types. Ecosphere 8(11):e01997

    Article  Google Scholar 

  • Yao L, Rezaei Rashti M, Brough DM, Burford MA, Liu W, Liu G, Chen C (2019) Stoichiometric control on riparian wetland carbon and nutrient dynamics under different land uses. Sci Total Environ 697:134127

    Article  ADS  CAS  PubMed  Google Scholar 

  • Zatta A, Clifton-Brown J, Robson P, Hastings A, Monti A (2014) Land use change from C3 grassland to C4 Miscanthus: effects on soil carbon content and estimated mitigation benefit after six years. GCB Bioenergy 6(4):360–370

    Article  CAS  Google Scholar 

  • Zhang L, Hu H, Shen J, He J (2012) Ammonia-oxidizing archaea have more important role than ammonia-oxidizing bacteria in ammonia oxidation of strongly acidic soils. ISME J 6:1032–1045

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the farmer Mark Savina for providing access to the sampling sites.

Funding

This project was financially supported by the Griffith University-James Cook University Collaborative Research Fund.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mehran Rezaei Rashti or Chengrong Chen.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible editor: Bin Ma

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rashti, M.R., Nelson, P.N., Lan, Z. et al. Sugarcane cultivation altered soil nitrogen cycling microbial processes and decreased nitrogen bioavailability in tropical Australia. J Soils Sediments 24, 946–955 (2024). https://doi.org/10.1007/s11368-023-03704-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-023-03704-7

Keywords

Navigation