Skip to main content
Log in

Responses of soil nitrogen and carbon mineralization rates to fertilization and crop rotation

  • Soils, Sec 5 • Soil and Landscape Ecology • Research Article
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

The mineralization rate of soil carbon (C) and nitrogen (N) is important for determining soil C storage as well as nutrient supply and retention. Soil C and N decomposition processes are microbially driven and are therefore expected to be influenced by the balance between soil resource availability and microbial resource demand. However, we lack understanding of how the microbial uptake and mineralization of soil C and N is affected by different levels of fertilization and crop rotation patterns in agricultural systems.

Materials and methods

Soils from a field experiment including five levels of N fertilization (0 kg N ha−1 (control, 0), 84 kg N ha−1 (low N application), 95 kg N ha−1 (moderate N application), 105 kg N ha−1 (conventional N application) and 115.5 kg N ha−1 (high N application)) were used to determine soil C and N mineralization and retention, in either a tobacco plantation either under tobacco monoculture or tobacco-maize rotation.

Results and discussion

Nitrogen fertilizer application increased net N mineralization (40–307%), net nitrification (150–400%), microbial NUE (131–373%) and CUE (16–57%) but decreased respiration (11–42%) in monoculture system, due to the significant higher DOC concentration and microbial C limitation. However, N fertilizer application increased net N mineralization (67–400%), net nitrification (50–544%), and microbial NUE (84–438%) but reduced microbial respiration (56–71%) and CUE (8–39%) in rotation system, due to the lower microbial activity caused by significant higher microbial C and N limitation and poorer C quality. Therefore, fertilization aggravated microbial resource limitation and lowered quality indicated by elemental stoichiometry in rotation system, leading to decoupling of microbial respiration and metabolism.

Conclusions

Together, our results suggest that elemental stoichiometry and enzyme activities can be used to predict soil C and N cycling under different agricultural management practices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akhtar K, Wang W, Ren G, Khan A, Feng Y, Yang G (2018) Changes in soil enzymes, soil properties, and maize crop productivity under wheat straw mulching in Guanzhong, China. Soil Till Res 182:94–102

    Article  Google Scholar 

  • Booth M, Stark JE (2005) Controls on nitrogen cycling in terrestrial ecosystems: a synthetic analysis of literature data. Ecol Monogr 75:139–157

    Article  Google Scholar 

  • Brookes PC, Powlson DS, Jenkinson DS (1982) Measurement of microbial biomass phosphorus in soil. Soil Biol Biochem 14(4):319–329

    Article  CAS  Google Scholar 

  • Brookes P, Kragt J, Powlson D, Jenkinson D (1985) Chloroform fumigation and the release of soil nitrogen: the effects of fumigation time and temperature. Soil Biol Biochem 17:831–835

    Article  CAS  Google Scholar 

  • Carey CJ, Dove NC, Beman JM, Hart SC, Aronson EL (2016) Meta-analysis reveals ammonia-oxidizing bacteria respond more strongly to nitrogen addition than ammonia-oxidizing archaea. Soil Biol Biochem 99:158–166

    Article  CAS  Google Scholar 

  • Cenini VL, Fornara DA, McMullan G, Ternan N, Lajtha K, Crawley MJ (2015) Chronic nitrogen fertilization and carbon sequestration in grassland soils: evidence of a microbial enzyme link. Biogeochemistry 126:301–313

    Article  CAS  Google Scholar 

  • Cheng Y, Wang J, Chang SX, Cai Z, Müller C, Zhang J (2019) Nitrogen deposition affects both net and gross soil nitrogen transformations in forest ecosystems: a review. Environ Pollut 244:608–616

    Article  CAS  PubMed  Google Scholar 

  • Cheng Y, Wang J, Wang J, Wang S, Chang SX, Cai Z, Zhang J, Niu S, Hu S (2020) Nitrogen deposition differentially affects soil gross nitrogen transformations in organic and mineral horizons. Earth-Scie Rev 201:103033

    Article  CAS  Google Scholar 

  • Cui Y, Zhang Y, Duan C, Wang X, Zhang X, Ju W, Chen H, Yue S, Wang Y, Li S, Fang L (2020) Ecoenzymatic stoichiometry reveals microbial phosphorus limitation decreases the nitrogen cycling potential of soils in semi-arid agricultural ecosystems. Soil Till Res 197:104463

    Article  Google Scholar 

  • Cui Y, Moorhead DL, Peng S, Sinsabaugh RL (2023) New insights into the patterns of ecoenzymatic stoichiometry in soil and sediment. Soil Biol Biochem 177:108910

    Article  CAS  Google Scholar 

  • Cusack DF, Karpman J, Ashdown D, Cao Q, Ciochina M, Halterman S, Lydon S, Neupane A (2016) Global change effects on humid tropical forests: evidence for biogeochemical and biodiversity shifts at an ecosystem scale. Rev Geophys 54:523–610

    Article  ADS  Google Scholar 

  • Dai Z, Su W, Chen H, Barberán A, Zhao H, Yu M, Yu L, Brookes PC, Schadt CW, Chang SX, Xu J (2018) Long-term nitrogen fertilization decreases bacterial diversity and favors the growth of Actinobacteria and Proteobacteria in agro-ecosystems across the globe. Global Change Biol 24:3452–3461

    Article  ADS  Google Scholar 

  • Farooq M, Flower KC, Jabran K, Wahid A, Siddique KHM (2011) Crop yield and weed management in rainfed conservation agriculture. Soil Till Res 117:172–183

    Article  Google Scholar 

  • Gavazov K, Canarini A, Jassey VEJ, Mills R, Richter A, Sundqvist MK, Väisänen M, Walker TWN, Wardle DA, Dorrepaal E (2022) Plant-microbial linkages underpin carbon sequestration in contrasting mountain tundra vegetation types. Soil Biol Biochem 165:108530

    Article  CAS  Google Scholar 

  • Gong ZT, Zhang GL, Chen ZC (2007) Pedogenesis and soil taxonomy. Science Press, Beijing

    Google Scholar 

  • Hu Y, Zhang Z, Yang G, Ding C, Lü X (2021) Increases in substrate availability and decreases in soil pH drive the positive effects of nitrogen addition on soil net nitrogen mineralization in a temperate meadow steppe. Pedobiologia 89:150756

    Article  Google Scholar 

  • Hu J, Huang C, Zhou S, Kuzyakov Y (2022) Nitrogen addition to soil affects microbial carbon use efficiency: meta-analysis of similarities and differences in 13C and 18O approaches. Global Change Biol 28:4977–4988

    Article  CAS  Google Scholar 

  • Jian S, Li J, Chen J, Wang G, Mayes MA, Dzantor KE, Hui D, Luo Y (2016) Soil extracellular enzyme activities, soil carbon and nitrogen storage under nitrogen fertilization: a meta-analysis. Soil Biol Biochem 101:32–43

    Article  CAS  Google Scholar 

  • Kallenbach CM, Grandy AS, Frey SD, Diefendorf AF (2015) Microbial physiology and necromass regulate agricultural soil carbon accumulation. Soil Biol Biochem 91:279–290

    Article  CAS  Google Scholar 

  • Li J, Pei J, Dijkstra FA, Nie M, Pendall E (2021a) Microbial carbon use efficiency, biomass residence time and temperature sensitivity across ecosystems and soil depths. Soil Biol Biochem 154:108117

    Article  CAS  Google Scholar 

  • Li J, Sang C, Yang J, Qu L, Xia Z, Sun H, Jiang P, Wang X, He H, Wang C (2021b) Stoichiometric imbalance and microbial community regulate microbial elements use efficiencies under nitrogen addition. Soil Biol Biochem 156:108207

    Article  CAS  Google Scholar 

  • Li Z, Qiu X, Sun Y, Liu S, Hu H, Xie J, Chen G, Xiao Y, Tang Y, Tu L (2021c) C:N:P stoichiometry responses to 10 years of nitrogen addition differ across soil components and plant organs in a subtropical Pleioblastus amarus forest. Sci Total Environ 796:148925

    Article  ADS  CAS  PubMed  Google Scholar 

  • Liu Q, Zhao Y, Li T, Chen L, Chen Y, Sui P (2023) Changes in soil microbial biomass, diversity, and activity with crop rotation in cropping systems: a global synthesis. Appl Soil Ecol 186:104815

    Article  Google Scholar 

  • Lu M, Yang Y, Luo Y, Fang C, Zhou X, Chen J, Yang X, Li B (2011) Responses of ecosystem nitrogen cycle to nitrogen addition: a meta-analysis. New Phytol 189:1040–1050

    Article  CAS  PubMed  Google Scholar 

  • Ma Q, Wen Y, Wang D, Sun X, Hill PW, Macdonald A, Chadwick DR, Wu L, Jones DL (2020) Farmyard manure applications stimulate soil carbon and nitrogen cycling by boosting microbial biomass rather than changing its community composition. Soil Biol Biochem 144:107760

    Article  CAS  Google Scholar 

  • Macdonald CA, Delgado-Baquerizo M, Reay DS, Hicks LC, Singh BK (2018) Chapter 6 - soil nutrients and soil carbon storage: modulators and mechanisms. In: Singh BK (ed) Soil Carbon Storage. Academic Press, pp 167–205

    Google Scholar 

  • Madari B, Machado PLOA, Torres E, Andrade ASG d, LIO V (2005) No tillage and crop rotation effects on soil aggregation and organic carbon in a Rhodic Ferralsol from southern Brazil. Soil Till Res 80:185–200

    Article  Google Scholar 

  • Mahal NK, Castellano MJ, Miguez FE (2018) Conservation agriculture practices increase potentially mineralizable nitrogen: a meta-analysis. Soil Sci Soc Am J 82:1270–1278

    Article  CAS  Google Scholar 

  • Manzoni S, Taylor P, Richter A, Porporato A, Ågren GI (2012) Environmental and stoichiometric controls on microbial carbon-use efficiency in soils. New Phytol 196:79–91

    Article  CAS  PubMed  Google Scholar 

  • McDaniel MD, Tiemann LK, Grandy AS (2014) Does agricultural crop diversity enhance soil microbial biomass and organic matter dynamics? A meta-analysis. Ecol Appl 24:560–570

    Article  CAS  PubMed  Google Scholar 

  • Moorhead DL, Lashermes G, Sinsabaugh RL, Weintraub MN (2013) Calculating co-metabolic costs of lignin decay and their impacts on carbon use efficiency. Soil Biol Biochem 66:17–19

    Article  CAS  Google Scholar 

  • Moorhead DL, Sinsabaugh RL, Hill BH, Weintraub MN (2016) Vector analysis of ecoenzyme activities reveal constraints on coupled C, N and P dynamics. Soil Biol Biochem 93:1–7

    Article  CAS  Google Scholar 

  • Moorhead D, Cui Y, Sinsabaugh R, Schimel J (2023) Interpreting patterns of ecoenzymatic stoichiometry. Soil Biol Biochem 180:108997

    Article  CAS  Google Scholar 

  • Mooshammer M, Wanek W, Hämmerle I, Fuchslueger L, Hofhansl F, Knoltsch A, Schnecker J, Takriti M, Watzka M, Wild B, Keiblinger KM, Zechmeister-Boltenstern S, Richter A (2014) Adjustment of microbial nitrogen use efficiency to carbon:nitrogen imbalances regulates soil nitrogen cycling. Nat Commun 5:3694

    Article  ADS  CAS  PubMed  Google Scholar 

  • Nie Y, Han X, Chen J, Wang M, Shen W (2019) The simulated N deposition accelerates net N mineralization and nitrification in a tropical forest soil. Biogeosciences 16:4277–4291

    Article  ADS  CAS  Google Scholar 

  • Poeplau C, Helfrich M, Dechow R, Szoboszlay M, Tebbe CC, Don A, Greiner B, Zopf D, Thumm U, Korevaar H, Geerts R (2019) Increased microbial anabolism contributes to soil carbon sequestration by mineral fertilization in temperate grasslands. Soil Biol Biochem 130:167–176

    Article  CAS  Google Scholar 

  • Quinton JN, Govers G, Van Oost K, Bardgett RD (2010) The impact of agricultural soil erosion on biogeochemical cycling. Nat Geosci 3:311–314

    Article  ADS  CAS  Google Scholar 

  • Riggs CE, Hobbie SE (2016) Mechanisms driving the soil organic matter decomposition response to nitrogen enrichment in grassland soils. Soil Biol Biochem 99:54–65

    Article  CAS  Google Scholar 

  • Roller BRK, Schmidt TM (2015) The physiology and ecological implications of efficient growth. ISME J 9:1481–1487

    Article  PubMed  PubMed Central  Google Scholar 

  • Sarker JR, Singh BP, Dougherty WJ, Fang Y, Badgery W, Hoyle FC, Dalal RC, Cowie AL (2018) Impact of agricultural management practices on the nutrient supply potential of soil organic matter under long-term farming systems. Soil Till Res 175:71–81

    Article  Google Scholar 

  • She S, Niu J, Zhang C, Xiao Y, Chen W, Dai L, Liu X, Yin H (2017) Significant relationship between soil bacterial community structure and incidence of bacterial wilt disease under continuous cropping system. Arch microbiol 199:267–275

    Article  CAS  PubMed  Google Scholar 

  • Silva-Sánchez A, Soares M, Rousk J (2019) Testing the dependence of microbial growth and carbon use efficiency on nitrogen availability, pH, and organic matter quality. Soil Biol Biochem 134:25–35

    Article  Google Scholar 

  • Sinsabaugh RL, Hill BH, Follstad Shah JJ (2009) Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment. Nature 462:795–798

    Article  ADS  CAS  PubMed  Google Scholar 

  • Sinsabaugh RL, Turner BL, Talbot JM, Waring BG, Powers JS, Kuske CR, Moorhead DL, Follstad Shah JJ (2016) Stoichiometry of microbial carbon use efficiency in soils. Ecological Monographs 86:172–189

    Article  Google Scholar 

  • Song L, Li Z, Niu S (2021) Global soil gross nitrogen transformation under increasing nitrogen deposition. Global Biogeochem Cy 35:e2020GB006711

    Article  ADS  CAS  Google Scholar 

  • Spohn M, Pötsch EM, Eichorst SA, Woebken D, Wanek W, Richter A (2016) Soil microbial carbon use efficiency and biomass turnover in a long-term fertilization experiment in a temperate grassland. Soil Biol Biochem 97:168–175

    Article  CAS  Google Scholar 

  • Ta Z, Chen HYH, Ruan H (2018) Global negative effects of nitrogen deposition on soil microbes. ISME J 12:1817–1825

    Article  Google Scholar 

  • Tian D, Niu S (2015) A global analysis of soil acidification caused by nitrogen addition. Environ Res Lett 10:024019

    Article  ADS  Google Scholar 

  • Tiemann LK, Grandy AS, Atkinson EE, Marin-Spiotta E, McDaniel MD (2015) Crop rotational diversity enhances belowground communities and functions in an agroecosystem. Ecol Lett 18:761–771

    Article  CAS  PubMed  Google Scholar 

  • USDA (2014) Keys to soil taxonomy, 12th edn. USDA, Washington, DC

    Google Scholar 

  • Vance ED, Brookes PC, Jenkinson DS (1987) An extraction method for measuring soil microbial biomass C. Soil Biol Biochem 19:703–707

    Article  CAS  Google Scholar 

  • Wang C, Ning P, Li J, Wei X, Ge T, Cui Y, Deng X, Jiang Y, Shen W (2022) Responses of soil microbial community composition and enzyme activities to long-term organic amendments in a continuous tobacco cropping system. Appl Soil Ecol 169:104210

    Article  Google Scholar 

  • Wang M, Chen H, Zhang W, Wang K (2018) Soil nutrients and stoichiometric ratios as affected by land use and lithology at county scale in a karst area, southwest China. Sci Total Environ 619:1299–1307

    Article  ADS  PubMed  Google Scholar 

  • West TO, Post WM (2002) Soil organic carbon sequestration rates by tillage and crop rotation. Soil Sci Soc Am J 66:1930–1946

    Article  Google Scholar 

  • Wild B, Schnecker J, Knoltsch A, Takriti M, Mooshammer M, Gentsch N, Mikutta R, Alves RJE, Gittel A, Lashchinskiy N, Richter A (2015) Microbial nitrogen dynamics in organic and mineral soil horizons along a latitudinal transect in western Siberia. Global Biogeochem Cy 29:567–582

    Article  ADS  CAS  Google Scholar 

  • Wu JJRG, Joergensen RG, Pommerening B, Chaussod R, Brookes PC (1990) Measurement of soil microbial biomass C by fumigation-extraction-an automated procedure. Soil Biol Biochem 22(8):1167–1169

    Article  CAS  Google Scholar 

  • Wyngaard N, Franklin DH, Habteselassie MY, Mundepi A, Cabrera ML (2016) Legacy effect of fertilization and tillage systems on nitrogen mineralization and microbial communities. Soil Sci Soc Am J 80:1262–1271

    Article  CAS  Google Scholar 

  • Yang X, Duan P, Hicks L, Wang K, Li D (2023) Mechanisms underlying the responses of microbial carbon and nitrogen use efficiencies to nitrogen addition are mediated by topography in a subtropical forest. Sci Total Environ 880:163236

    Article  ADS  CAS  PubMed  Google Scholar 

  • Yuan X, Niu D, Gherardi LA, Liu Y, Wang Y, Elser JJ, Fu H (2019) Linkages of stoichiometric imbalances to soil microbial respiration with increasing nitrogen addition: Evidence from a long-term grassland experiment. Soil Biol Biochem 138:107580

    Article  CAS  Google Scholar 

  • Zeng Z, Guo X, Xu P, Xiao R, Huang D, Gong X, Cheng M, Yi H, Li T, Zeng G (2018) Responses of microbial carbon metabolism and function diversity induced by complex fungal enzymes in lignocellulosic waste composting. Sci Total Environ 643:539–547

    Article  ADS  CAS  PubMed  Google Scholar 

  • Zhang JB, Wang L, Zhao W, Hu HF, Feng XJ, Müller C, Cai ZC (2016a) Soil gross nitrogen transformations along the Northeast China Transect (NECT) and their response to simulated rainfall events. Sci Rep 6:22830

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Qiang H, McHugh AD, He J, Li H, Wang Q, Lu Z (2016b) Effect of conservation farming practices on soil organic matter and stratification in a mono-cropping system of Northern China. Soil Till Res 15:173–181

    Article  Google Scholar 

  • Zhang S, Zheng Q, Noll L, Hu Y, Wanek W (2019) Environmental effects on soil microbial nitrogen use efficiency are controlled by allocation of organic nitrogen to microbial growth and regulate gross N mineralization. Soil Biol Biochem 135:304–315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang K, Maltais-Landry G, Liao HL (2021) How soil biota regulate C cycling and soil C pools in diversified crop rotations. Soil Biol Biochem 156:108219

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by National Natural Science Foundation of China (42207262), grants from the Yunnan Science and Technology key research project (202001AU070006), Yunnan Academy of Tobacco Agricultural Sciences (2019530000241011, 2019530000241024).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. YJ and LX: conceptualization, methodology, and writing—original draft; PD: writing—review and editing; JL, YC, and XD: investigation, methodology, review and editing; YJ, XY, and JL: methodology, resources, and funding acquisition

Corresponding authors

Correspondence to Xinyi Yang or Jian Li.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible editor: Xiaoqi Zhou

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 573 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Y., Xiao, L., Liu, J. et al. Responses of soil nitrogen and carbon mineralization rates to fertilization and crop rotation. J Soils Sediments 24, 1289–1301 (2024). https://doi.org/10.1007/s11368-023-03694-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-023-03694-6

Keywords

Navigation