Skip to main content
Log in

Effects of nano-TiO2/Fe3O4 addition on soil phosphorus fractions, microbial characteristics, and plant growth

  • Soils, Sec 4 • Ecotoxicology • Research Article
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

Nanoparticles (NPs) have been considered to improve phosphorus (P) availability and activation of soil P in agroecosystems. However, the effects of NPs addition on soil P fractions, microbial characteristics, and plant growth are not well-understood. This study aims to investigate the influences of titanium dioxide (TiO2NPs) and iron oxide (Fe3O4NPs) addition on soil P fractions, microbial characteristics, and plant growth of oilseed rape (Brassica napus L.).

Materials and methods

Pot experiment was conducted in 2020 and 2021 years. The exposure of TiO2NPs/Fe3O4NPs (1000 mg kg−1 dry soil) to oilseed rape cultivated was investigated in two contracting calcareous soils (i.e., vegetable field (VF) and cotton field (CF)) for 86 days. Soil pH, Olsen-P, available-Ti/Fe, and Fe-oxides were determined. Different P fractions (CaCl2-P, Citrate-P, Enzyme-P, and HCl-P) were tested by biologically based P fractionation method (BBP). Soil microbial biomass phosphorous (MBP) and alkaline phosphatase activity (ALP) were analyzed. The numbers of bacteria and fungi count were measured by flow cytometry method. Plant biomass and total P uptake were examined in the TiO2NPs/Fe3O4NPs treatments.

Results and discussion

Compared with the CK treatment, soil pH was decreased by 12.0–18.0% in the TiO2NPs- and Fe3O4NPs-added treatments in both the VF and CF soils. In contrast, soil Olsen-P was increased by 12.0–19.0%, respectively, implying that TiO2NPs/Fe3O4NPs addition improved soil P availability. The addition of TiO2NPs/Fe3O4NPs significantly affected different soil P fractions. For example, the TiO2NPs/Fe3O4NPs treatments increased CaCl2-P and Citrate-P while decreased Enzyme-P content, indicating that a great portion of soil Enzyme-P was transformed into CaCl2-P and Citrate-P in the TiO2NPs/Fe3O4NPs-treated soils. However, TiO2NPs/Fe3O4NPs addition had no significant influences on HCl-P. Soil microbial biomass phosphorus (MBP), ALP activity, and available-Ti/Fe contents were almost unaffected by TiO2NPs/Fe3O4NPs addition. In addition, the addition of TiO2NPs/Fe3O4NPs had no influence on the numbers of soil bacteria and fungi and plant biomass and total P uptake of oilseed rape.

Conclusions

This study demonstrated that the addition of TiO2NPs/Fe3O4NPs in calcareous soils improved soil P availability, and promoted insoluble P transformed to labile-P (CaCl2-P and Citrate-P). However, TiO2NPs/Fe3O4NPs addition at dose of 1000 mg kg−1 dry soil had no toxic effect on oilseed rape (Brassica napus L.). The proper application dosage should be further explored to activate soil P and promote crop growth. Our results provide theoretical basis for the effects of nanoparticles addition on soil P activation, microbial characteristics, and plant growth of Brassica napus L.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahmed B, Rizvi A, Ali K, Lee J, Zaidi A, Khan MS, Musarrat J (2021) Nanoparticles in the soil–plant system: a review. Environ Chem Lett 19:1545–1609

    Article  CAS  Google Scholar 

  • Alkhatib R, Alkhatib B, Abdo N, Al-Eitan L, Creamer R (2019) Physio-biochemical and ultrastructural impact of Fe3O4 nanoparticles on tobacco. BMC Plant Biol 19:253

    Article  Google Scholar 

  • Allison SD, Martiny JBH (2008) Resistance, resilience, and redundancy in microbial communities. PNAS 105:11512–11519

    Article  CAS  Google Scholar 

  • Al-Mamun MR, Hasan MR, Ahommed MS, Bacchu MS, Ali MR, Khan MZH (2021) Nanofertilizers towards sustainable agriculture and environment. Environ Technol Inno 23:101658

    Article  CAS  Google Scholar 

  • Amooaghaie R, Norouzi M, Saeri M (2017) Impact of zinc and zinc oxide nanoparticles on the physiological and biochemical processes in tomato and wheat. Botany 95:441–455

    Article  CAS  Google Scholar 

  • Arshad M, Nisar S, Gul I, Nawaz U, Irum S, Ahmad S, Sadat H, Mian IA, Ali S, Rizwan M (2021) Multi-element uptake and growth responses of Rice (Oryza sativa L.) to TiO2 nanoparticles applied in different textured soils. Ecotoxicol Environ Saf 215:112149

  • Asadishad B, Chahal S, Akbari A, Cianciarelli V, Azodi M, Ghoshal S, Tufenkji N (2018) Amendment of agricultural soil with metal nanoparticles: effects on soil enzyme activity and microbial community composition. Environ Sci Technol 52:1908–1918

    Article  CAS  Google Scholar 

  • Asadishad B, Chahal S, Cianciarelli V, Zhou K, Tufenkji N (2017) Effect of gold nanoparticles on extracellular nutrient-cycling enzyme activity and bacterial community in soil slurries: role of nanoparticle size and surface coating. Environ Sci Nano 4:907–918

    Article  CAS  Google Scholar 

  • Atha DH, Wang H, Petersen EJ, Cleveland D, Holbrook RD, Jaruga P, Dizdaroglu M, Xing B, Nelson BC (2012) Copper oxide nanoparticle mediated DNA damage in terrestrial plant models. Environ Sci Technol 46:1819–1827

    Article  CAS  Google Scholar 

  • Awad YM, Vithanage M, Niazi NK, Rizwan M, Rinklebe J, Yang JE, Ok YS, Lee SS (2019) Potential toxicity of trace elements and nanomaterials to Chinese cabbage in arsenic- and lead-contaminated soil amended with biochars. Environ Geochem Health 41:1777–1791

    Article  CAS  Google Scholar 

  • Bååth E (1992) Measurement of heavy-metal tolerance of soil bacteria using thymidine incorporation into bacteria extracted after homogenization centrifugation. Soil Biol Biochem 24:1167–1172

    Article  Google Scholar 

  • Barrow NJ, Sen A, Roy N, Debnath A (2020) The soil phosphate fractionation fallacy. Plant Soil 459:1–11

    Article  Google Scholar 

  • Ben-Moshe T, Frenk S, Dror I, Minz D, Berkowitz B (2013) Effects of metal oxide nanoparticles on soil properties. Chemosphere 90:640–646

    Article  CAS  Google Scholar 

  • Bol R et al (2016) Dissolved and colloidal phosphorus fluxes in forest ecosystems—an almost blind spot in ecosystem research. J Plant Nutr Soil Sci 179:425–438

    Article  CAS  Google Scholar 

  • Brookes PC, Powlson DS, Jenkinson DS (1982) Measurement of microbial biomass phosphorus in soil. Soil Biol Biochem 14:319–329

    Article  CAS  Google Scholar 

  • Coward EK, Thompson AT, Plante AF (2017) Iron-mediated mineralogical control of organic matter accumulation in tropical soils. Geoderma 306:206–216

    Article  CAS  Google Scholar 

  • Darlington TK, Neigh AM, Spencer MT, Guyen OTN, Oldenburg SJ (2009) Nanoparticle characteristics affecting environmental fate and transport through soil. Environ Toxicol Chem 28:1191–1199

    Article  CAS  Google Scholar 

  • De Souza A, Govea-Alcaide E, Masunaga SH, Fajardo-Rosabal L, Effenberger F, Rossi LM, Jardim RF (2019) Impact of Fe3O4 nanoparticle on nutrient accumulation in common bean plants grown in soil. SN Appl Sci 1:308

    Article  Google Scholar 

  • DeLuca TH, Glanville HC, Harris M, Emmett BA, Pingree MRA, de Sosa LL, Cerdá-Moreno C, Jones DL (2015) A novel biologically-based approach to evaluating soil phosphorus availability across complex landscapes. Soil Biol Biochem 88:110–119

    Article  CAS  Google Scholar 

  • Devau N, Le Cadre E, Hinsinger P, Jaillard B, Gérard F (2009) Soil pH controls the environmental availability of phosphorus: experimental and mechanistic modelling approaches. Appl Geochem 24:2163–2174

    Article  CAS  Google Scholar 

  • Eltohamy KM, Li J, Gouda M, Menezes-Blackburn D, Milham PJ, Khan S, Li FY, Liu CL, Xu JM, Liang XQ (2023) Nano and fine colloids suspended in the soil solution regulate phosphorus desorption and lability in organic fertiliser-amended soils. Sci Total Environ 858:160195

    Article  CAS  Google Scholar 

  • Erinle KO, Doolette A, Marschner P (2020) Changes in phosphorus pools in the detritusphere induced by removal of P or switch of residues with low and high C/P ratio. Biol Fert Soils 56:1–10

    Article  CAS  Google Scholar 

  • Fayiga AO, Saha UK (2017) Nanoparticles in biosolids: effect on soil health and crop growth. Peertechz J Environ Sci Toxicol 2:59–67

    Article  Google Scholar 

  • French RA, Jacobson AR, Kim B, Isley SL, Penn RL, Philippe C, Baveye PC (2009) Influence of ionic strength, pH, and cation valence on aggregation kinetics of titanium dioxide nanoparticles. Environ Sci Technol 43:1354–1359

    Article  CAS  Google Scholar 

  • Friedt W, Tu J, Fu T (2018) Academic and economic importance of Brassica napus rapeseed. Brassica Napus Genome 1–20

  • Gerard F, Blitz-Frayret C, Hinsinger P, Pages L (2017) Modelling the interactions between root system architecture, root functions and reactive transport processes in soil. Plant Soil 413:161–180

    Article  CAS  Google Scholar 

  • Gu XB, Li YN, Du YD (2017) Biodegradable film mulching improves soil temperature, moisture and seed yield of winter oilseed rape (Brassica napus L.). Soil Tillage Res 171:42–50

    Article  Google Scholar 

  • Hanif HU, Arshad M, Ali MA, Ahmed N, Qazi IA (2015) Phyto-availability of phosphorus to Lactuca sativa in response to soil applied TiO2 nanoparticles. Pak J Agric Sci 52:177–182

    Google Scholar 

  • He Z, Griffin TS, Honeycutt CW (2006) Soil phosphorus dynamics in response to dairy manure and inorganic fertilizer applications. Soil Sci 171:598–609

    Article  CAS  Google Scholar 

  • He S, Feng Y, Ren H, Zhang Y, Gu N, Lin X (2011) The impact of iron oxide magnetic nanoparticles on the soil bacterial community. J Soil Sediment 11:1408–1417

    Article  CAS  Google Scholar 

  • Heckman K, Lawrence CR, Harden JW (2018) A sequential selective dissolution method to quantify storage and stability of organic carbon associated with Al and Fe hydroxide phases. Geoderma 312:24–35

    Article  CAS  Google Scholar 

  • Heinlaan M, Ivask A, Blinova I, Dubourguier HC, Kahru A (2008) Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere 71:1308–1316

    Article  CAS  Google Scholar 

  • Javed R, Ain NU, Gul A, Arslan Ahmad M, Guo W, Ao Q, Tian S (2022) Diverse biotechnological applications of multifunctional titanium dioxide nanoparticles: an up-to-date review. IET Nanobiotechnol 16:171–189

    Article  Google Scholar 

  • Javed Z, Dashora K, Mishra M, D. Fasake V, Srivastva A, (2019) Effect of accumulation of nanoparticles in soil health- a concern on future. Front Nanosci Nanotech 5:1–9

    Article  Google Scholar 

  • Jiang W, Mashayekhi H, Xing B (2009) Bacterial toxicity comparison between nano-and micro-scaled oxide particles. Environ Pollut 157:1619–1625

    Article  CAS  Google Scholar 

  • Jiang Z, Lian Y, Qin XQ (2014) Rocky desertification in Southwest China: impacts, causes, and restoration. Earth-Sci Rev 132:1–12

    Article  Google Scholar 

  • Katyal JC, Sharma BD (1991) DTPA-extractable and total Zn, Cu, Mn, and Fe in Indian soils and their association with some soil properties. Geoderma 49:165–179

    Article  CAS  Google Scholar 

  • Kaur H, Kalia A, Sandhu JS, Dheri GS, Kaur G, Pathania S (2022) Interaction of TiO2 nanoparticles with soil: effect on microbiological and chemical traits. Chemosphere 301:134629

    Article  CAS  Google Scholar 

  • Khalili B, Weihe C, Kimball S, Schmidt KT, Martiny JBH (2019) Optimization of a method to quantify soil bacterial abundance by flow cytometry. mSphere 4:e00435–19

  • Kizilkaya R, Bayrakli B (2005) Effects of N-enriched sewage sludge on soil enzyme activities. Appl Soil Ecol 30:192–202

    Article  Google Scholar 

  • Konate A, He X, Zhang Z, Ma Y, Zhang P, Alugongo G, Rui Y (2017) Magnetic (Fe3O4) nanoparticles reduce heavy metals uptake and mitigate their toxicity in wheat seedling. Sustainability 9:790

    Article  Google Scholar 

  • Li S, Chen S, Wang M, Lei X, Zheng H, Sun X, Wang L, Han Y (2020) Iron fractions responsible for the variation of Cd bioavailability in paddy soil under variable pe+pH conditions. Chemosphere 251:126355

    Article  CAS  Google Scholar 

  • Li XC, Yang ZZ, Zhang C, Wei JJ, Zhang HQ, Li ZH, Ma C, Wang MS, Chen JQ, Hu JW (2019) Effects of different crystalline iron oxides on immobilization and bioavailability of Cd in contaminated sediment. Chem Eng J 373:307–317

    Article  CAS  Google Scholar 

  • Liu R, Lal R (2014) Synthetic apatite nanoparticles as a phosphorus fertilizer for soybean (Glycine max). Sci Rep 4:5686

    Article  CAS  Google Scholar 

  • Luo Z, Wang Z, Li Q, Pan Q, Yan C (2010) Effects of titania nanoparticles on phosphorus fractions and its release in resuspended sediments under UV irradiation. J Hazard Mater 174:477–483

    Article  CAS  Google Scholar 

  • Major BJ, Barraclough PB (2001) Critical phosphate (P) and inorganic phosphate (Pi) concentrations for the growth of winter oilseed rape (Brassica napus). In: Horst WJ et al (eds) Plant Nutrition: Food security and sustainability of agro-ecosystems through basic and applied research. Springer, Netherlands, Dordrecht, pp 714–715

    Chapter  Google Scholar 

  • Mauter MS, Zucker I, Perreault F, Werber JR, Kim JH, Elimelech M (2018) The role of nanotechnology in tackling global water challenges. Nat Sustain 1:166–175

    Article  Google Scholar 

  • McKay Fletcher DM, Ruiz S, Dias T, Petroselli C, Roose T (2020) Linking root structure to functionality: the impact of root system architecture on citrate-enhanced phosphate uptake. New Phytol 227:376–391

    Article  CAS  Google Scholar 

  • Moll J, Klingenfuss F, Widmer F, Gogos A, Bucheli TD, Hartmann M, van der Heijden MGA (2017) Effects of titanium dioxide nanoparticles on soil microbial communities and wheat biomass. Soil Biol Biochem 111:85–93

    Article  CAS  Google Scholar 

  • Murphy J, Riley JP (1962) A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta 27:31–36

    Article  CAS  Google Scholar 

  • Nedelciu CE, Ragnarsdóttir KV, Schlyter P, Stjernquist I (2020) Global phosphorus supply chain dynamics: assessing regional impact to 2050. Glob Food Secur 26:100426

    Article  CAS  Google Scholar 

  • Ohno T, Zibilske LM (1991) Determination of low concentrations of phosphorus in soil extracts using malachite green. Soil Sci Soc Am J 55:892–895

    Article  CAS  Google Scholar 

  • Palmqvist NG, Bejai S, Meijer J, Seisenbaeva GA, Kessler VG (2015) Nano titania aided clustering and adhesion of beneficial bacteria to plant roots to enhance crop growth and stress management. Sci Rep 5:10146

    Article  CAS  Google Scholar 

  • Pittol M, Tomacheski D, Simões DN, Ribeiro VF, Santana RMC (2017) Macroscopic effects of silver nanoparticles and titanium dioxide on edible plant growth. Environ Nanotechnol Monit Manage 8:127–133

    Google Scholar 

  • Raliya R, Biswas P, Tarafdar JC (2015) TiO2 nanoparticle biosynthesis and its physiological effect on mung bean (Vigna radiata L.). Biotechnol Rep 5:22–26

    Article  Google Scholar 

  • Raliya R, Tarafdar JC (2013) ZnO nanoparticle biosynthesis and its effect on phosphorous-mobilizing enzyme secretion and gum contents in Clusterbean (Cyamopsis tetragonoloba L.). Agr Res 2:48–57

    Article  CAS  Google Scholar 

  • Raliya R, Tarafdar JC, Biswas P (2016) Enhancing the mobilization of native phosphorus in the mung bean rhizosphere using ZnO nanoparticles synthesized by soil fungi. J Agric Food Chem 64:3111–3118

    Article  CAS  Google Scholar 

  • Rizwan M, Ali S, Qayyum MF, Ok YS, Adrees M, Ibrahim M, Zia-Ur-Rehman M, Farid M, Abbas F (2017) Effect of metal and metal oxide nanoparticles on growth and physiology of globally important food crops: a critical review. J Hazard Mater 322:2–16

    Article  CAS  Google Scholar 

  • Roberts TL, Johnston AE (2015) Phosphorus use efficiency and management in agriculture. Resour Conserv Recy 105:275–281

    Article  Google Scholar 

  • Rui M, Ma C, Hao Y, Guo J, Rui Y, Tang X, Zhao Q, Fan X, Zhang Z, Hou T, Zhu S (2016) Iron oxide nanoparticles as a potential iron fertilizer for peanut (Arachis hypogaea). Front Plant Sci 7:815

    Article  Google Scholar 

  • Servin AD, Morales MI, Castillo-Michel H, Hernandez-Viezcas JA, Munoz B, Zhao L, Núñez JEV, Peralta-Videa JR, Gardea-Torresdey JL (2013) Synchrotron verification of TiO2 accumulation in cucumber fruit: a possible pathway of TiO2 nanoparticle transfer from soil into the food chain. Environ Sci Technol 47:11592–11598

    Article  CAS  Google Scholar 

  • Shah V, Belozerova I (2009) Influence of metal nanoparticles on the soil microbial community and germination of lettuce seeds. Water Air Soil Poll 197:143–148

    Article  CAS  Google Scholar 

  • Simonin M, Guyonnet JP, Martins JM, Ginot M, Richaume A (2015) Influence of soil properties on the toxicity of TiO2 nanoparticles on carbon mineralization and bacterial abundance. J Hazard Mater 283:529–535

    Article  CAS  Google Scholar 

  • Souza-Torres AD, Govea-Alcaide E, Gómez-Padilla E, Masunaga SH, Effenberger FB, Rossi LM, López-Sánchez RC, Jardim RdF (2021) Fe3O4 nanoparticles and rhizobium inoculation enhance nodulation, nitrogen fixation and growth of common bean plants grown in soil. Rhizosphere 17:100275

    Article  Google Scholar 

  • Subramanian KS, Manikandan A, Thirunavukkarasu M, Rahale CS (2015) Nano-fertilizers for balanced crop nutrition. Nanotechnol Food Agric 69–80

  • Sun Q, Hu Y, Chen X, Wei X, Shen J, Ge T, Su Y (2021) Flooding and straw returning regulates the partitioning of soil phosphorus fractions and phoD-harboring bacterial community in paddy soils. Appl Microbiol Biotechnol 105:9343–9357

    Article  CAS  Google Scholar 

  • Swaney DP, Howarth RW (2019) Phosphorus use efficiency and crop production: patterns of regional variation in the United States, 1987–2012. Sci Total Environ 685:174–188

    Article  CAS  Google Scholar 

  • Tabatabai MA (1994) Soil Enzymes. Methods of soil analysis: Part 2 Microbiol Biochem Prop 5:775–833

  • Tarafdar JC, Claassen N (2003) Organic phosphorus utilization by wheat plants under sterile conditions. Biol Fert Soils 39:25–29

    Article  CAS  Google Scholar 

  • Ullah S, Adeel M, Zain M, Rizwan M, Irshad MK, Jilani G, Hameed A, Khan A, Arshad M, Raza A, Baluch MA, Rui Y (2020) Physiological and biochemical response of wheat (Triticum aestivum) to TiO2 nanoparticles in phosphorous amended soil: a full life cycle study. J Environ Manage 263:110365

    Article  CAS  Google Scholar 

  • Waani SPT, Irum S, Gul I, Yaqoob K, Khalid MU, Ali MA, Manzoor U, Noor T, Ali S, Rizwan M (2021) TiO2 nanoparticles dose, application method and phosphorous levels influence genotoxicity in Rice (Oryza sativa L.), soil enzymatic activities and plant growth. Ecotoxicol Environ Saf 213, 111977

  • Wang J, Fang Z, Cheng W, Yan X, Tsang PE, Zhao D (2016) Higher concentrations of nanoscale zero-valent iron (nZVI) in soil induced rice chlorosis due to inhibited active iron transportation. Environ Pollut 210:338–345

    Article  CAS  Google Scholar 

  • Wu B, Wang Y, Lee YH, Horst A, Wang Z, Chen DR, Radhakrishna S, Tang YJ (2010) Comparative eco-toxicities of nano-ZnO particles under aquatic and aerosol exposure modes. Environ Sci Technol 44:1484–1489

    Article  CAS  Google Scholar 

  • Xiong L, Wang P, Kopittke PM (2018) Tailoring hydroxyapatite nanoparticles to increase their efficiency as phosphorus fertilisers in soils. Geoderma 323:116–125

    Article  CAS  Google Scholar 

  • Xu C, Peng C, Sun L, Zhang S, Huang H, Chen Y, Shi J (2015) Distinctive effects of TiO2 and CuO nanoparticles on soil microbes and their community structures in flooded paddy soil. Soil Biol Biochem 86:24–33

    Article  CAS  Google Scholar 

  • Xu M, Mao L, Du W, Guo H, Yin Y (2021) Divergence in response of japonica and hybrid rice to titanium dioxide nanoparticles. J Soil Sediment 21:1688–1697

    Article  CAS  Google Scholar 

  • Yan L, Li P, Zhao X, Ji R, Zhao L (2020) Physiological and metabolic responses of maize (Zea mays) plants to Fe3O4 nanoparticles. Sci Total Environ 718:137400

    Article  CAS  Google Scholar 

  • Yasmeen T, Arif MS, Shahzad SM, Riaz M, Tufail MA, Mubarik MS, Ahmad A, Ali S, Albasher G, Shakoor A (2022) Abandoned agriculture soil can be recultivated by promoting biological phosphorus fertility when amended with nano-rock phosphate and suitable bacterial inoculant. Ecotoxicol Environ Saf 234:113385

    Article  CAS  Google Scholar 

  • Yu HY, Li FB, Liu CS, Huang W, Liu TX, Yu WM (2016) Iron redox cycling coupled to transformation and immobilization of heavy metals: implications for paddy rice safety in the red soil of South China. Adv Agron 137:279–317

    Article  Google Scholar 

  • Yuan J, Wang L, Wang S, Wang Y, Wang H, Chen H, Zhu W (2018) The use of biologically based phosphorus fractions to evaluate soil P availability in reduced P-input paddy soils. Soil Use Manage 34:326–334

    Article  Google Scholar 

  • Zahra Z, Arshad M, Rafique R (2015) Metallic nanoparticles (TiO2 and Fe3O4) application modify rhizosphere phosphorus availability and uptake by Lactuca sativa. J Agric Food Chem 63:6876–6882

    Article  CAS  Google Scholar 

  • Zahra Z, Maqbool T, Arshad M, Badshah MA, Choi HK, Hur J (2019) Changes in fluorescent dissolved organic matter and their association with phytoavailable phosphorus in soil amended with TiO2 nanoparticles. Chemosphere 227:17–25

    Article  CAS  Google Scholar 

  • Zahra Z, Waseem N, Zahra R, Lee H, Badshah MA, Mehmood A, Choi HK, Arshad M (2017) Growth and metabolic responses of rice (Oryza sativa L.) cultivated in phosphorus-deficient soil amended with TiO2 nanoparticles. J Agric Food Chem 65:5598–5606

    Article  CAS  Google Scholar 

  • Zhang H, Huang Y, Ye X, Shi L, Xu F (2009) Genotypic differences in phosphorus acquisition and the rhizosphere properties of Brassica napus in response to low phosphorus stress. Plant Soil 320:91–102

    Article  CAS  Google Scholar 

  • Zhang L, Chen J, Chu G (2022) Legacy phosphorus in calcareous soil under 33 years of P fertilizer application: Implications for efficient P management in agriculture. Soil Use Manage 38:1380–1393

    Article  Google Scholar 

Download references

Funding

This research was supported by the National Natural Science Foundation of China (41161407).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guixin Chu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible editor: Zhihong Xu

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1278 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Ren, Z., Chen, H. et al. Effects of nano-TiO2/Fe3O4 addition on soil phosphorus fractions, microbial characteristics, and plant growth. J Soils Sediments 24, 275–288 (2024). https://doi.org/10.1007/s11368-023-03631-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-023-03631-7

Keywords

Navigation