Skip to main content
Log in

Variation of δ13C and soil organic carbon under different precipitation gradients in alpine grassland on the Qinghai–Tibetan Plateau

  • Soils, Sec 5 • Soil and Landscape Ecology • Research Article
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

Soil organic carbon (SOC) dynamics strongly affect the terrestrial carbon balance, and stable isotopic measurements provide detailed information about SOC cycling. However, the response of δ13C and SOC to climatic factors is still not well known in high alpine regions.

Methods

In this study, soil δ13C and SOC in vertical soil profiles were analysed at alpine grassland sites along four precipitation gradients (350–400, 450–500, 550–600, and 650–700 mm) on the eastern Qinghai–Tibetan Plateau. The β value is defined by the slope of the linear regression relating soil δ13C to the logarithm of SOC, and the higher β values represent slower SOC turnover.

Results

The SOC concentration tended to decline with increasing soil depth from 0 to 40 cm, while δ13C was enriched in alpine grassland on the eastern Qinghai–Tibetan Plateau. The δ13C values in the 650–700-mm class were relatively depleted compared with other precipitation classes. Redundancy analysis (RDA) showed that altitude was the most important factor—explaining 20.9% of the variation in 13C in surface soil (0–10 cm), followed by mean annual air temperature (MAT) (17.1%) and mean annual precipitation (MAP) (16.9%). MAT and altitude were the main factors controlling δ13C and β values. MAP did not significantly affect SOC distribution, but lower δ13C and β values occurred with higher precipitation. Correlations between SOC content and MAT increased significantly after removing relationships with MAP.

Conclusions

The results indicate that faster SOC decomposition may not necessarily lead to SOC losses on the eastern Tibetan Plateau given current conditions. Future research should consider the effects of interactions between warmer and wetter conditions (predicted under climate change) on SOC content and turnover.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Acton P, Fox J, Campbell E, Rowe H, Wilkinson M (2013) Carbon isotopes for estimating soil decomposition and physical mixing in well-drained forest soils. J Geophys Res Biogeosci 118(4):1532–1545

    Article  CAS  Google Scholar 

  • Averill C, Turner BL, Finzi AC (2014) Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage. Nature 505(7484):543–545

    Article  CAS  Google Scholar 

  • Bird M, Pousai P (1997) Variations of δ13C in the surface soil organic carbon pool. Global Biogeochem Cy 11(3):313–322

    Article  CAS  Google Scholar 

  • Bradford MA, Wieder WR, Bonan GB, Fierer N, Raymond PA, Crowther TW (2016) Managing uncertainty in soil carbon feedbacks to climate change. Nat Clim Change 6(8):751–758

    Article  CAS  Google Scholar 

  • Brunn M, Condron L, Wells A, Spielvogel S, Oelmann Y (2016) Vertical distribution of carbon and nitrogen stable isotope ratios in topsoils across a temperate rainforest dune chronosequence in New Zealand. Biogeochemistry 129(1–2):37–51

    Article  CAS  Google Scholar 

  • Brunn M, Spielvogel S, Sauer T, Oelmann Y (2014) Temperature and precipitation effects on δ13C depth profiles in SOM under temperate beech forests. Geoderma 235:146–153

    Article  CAS  Google Scholar 

  • Brye KR, West CP, Gbur EE (2004) Soil quality differences under native tallgrass prairie across a climosequence in Arkansas. Am Midl Nat 152(2):214–230

    Article  Google Scholar 

  • Campos X, Germino M, de Graaff M-A (2017) Enhanced precipitation promotes decomposition and soil C stabilization in semiarid ecosystems, but seasonal timing of wetting matters. Plant Soil 416(1–2):427–436

    Article  CAS  Google Scholar 

  • Carvalhais N, Forkel M, Khomik M, Bellarby J, Jung M, Migliavacca M, Mu MQ, Saatchi S, Santoro M, Thurner M, Weber U, Ahrens B, Beer C, Cescatti A, Randerson JT, Reichstein M (2014) Global covariation of carbon turnover times with climate in terrestrial ecosystems. Nature 514(7521):213–217

    Article  CAS  Google Scholar 

  • Chen Y, Feng JG, Yuan X, Zhu B (2020) Effects of warming on carbon and nitrogen cycling in alpine grassland ecosystems on the Tibetan Plateau: a meta-analysis. Geoderma 370:10

    Article  CAS  Google Scholar 

  • Conant RT, Ryan MG, Agren GI, Birge HE, Davidson EA, Eliasson PE, Evans SE, Frey SD, Giardina CP, Hopkins FM, Hyvonen R, Kirschbaum MUF, Lavallee JM, Leifeld J, Parton WJ, Steinweg JM, Wallenstein MD, Wetterstedt JAM, Bradford MA (2011) Temperature and soil organic matter decomposition rates - synthesis of current knowledge and a way forward. Glob Change Biol 17(11):3392–3404

    Article  Google Scholar 

  • Connin SL, Feng X, Virginia RA (2001) Isotopic discrimination during long-term decomposition in an arid land ecosystem. Soil Biol Biochem 33(1):41–51

    Article  CAS  Google Scholar 

  • Ding XL, Chen SY, Zhang B, Liang C, He HB, Horwath WR (2019) Warming increases microbial residue contribution to soil organic carbon in an alpine meadow. Soil Biol Biochem 135:13–19

    Article  CAS  Google Scholar 

  • Diochon A, Kellman L (2008) Natural abundance measurements of 13C indicate increased deep soil carbon mineralization after forest disturbance. Geophys Res Lett 35(14):5

    Article  CAS  Google Scholar 

  • Dong L, Zeng W, Wang A, Tang J, Yao X, Wang W (2020) Response of soil respiration and its components to warming and dominant species removal along an elevation gradient in alpine meadow of the Qinghai-Tibetan Plateau. Environ Sci Technol 54(17):10472–10482

    Article  CAS  Google Scholar 

  • Editorial Committee for Vegetation Map of China (2001) Vegetation atlas of China. Science Press, Beijing

    Google Scholar 

  • Farquhar GD, Oleary MH, Berry JA (1982) On the relationship between carbon isotope discrimination and the inter-cellular carbon-dioxide concentration in leaves. Aust J Plant Physiol 9(2):121–137

    CAS  Google Scholar 

  • Farquhar GD, Sharkey TD (1982) Stomatal conductance and photosynthesis. Annu Rev Plant Physiol 33:317–345

    Article  CAS  Google Scholar 

  • Fick SE, Hijmans RJ (2017) WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int J Climatol 37(12):4302–4315

    Article  Google Scholar 

  • Garten CT, Cooper LW, Post WM, Hanson PJ (2000) Climate controls on forest soil C isotope ratios in the Southern Appalachian Mountains. Ecology 81(4):1108–1119

    Article  Google Scholar 

  • Garten CT, Hanson PJ (2006) Measured forest soil C stocks and estimated turnover times along an elevation gradient. Geoderma 136(1–2):342–352

    Article  CAS  Google Scholar 

  • Gautam MK, Lee KS, Song BY, Bong YS (2017) Site related δ13C of vegetation and soil organic carbon in a cool temperate region. Plant Soil 418(1–2):293–306

    Article  CAS  Google Scholar 

  • Harris D, Horwath WR, van Kessel C (2001) Acid fumigation of soils to remove carbonates prior to total organic carbon or carbon-13 isotopic analysis. Soil Sci Soc Am J 65(6):1853–1856

    Article  CAS  Google Scholar 

  • Jia Y, Wang G, Tan Q, Chen Z (2016) Temperature exerts no influence on organic matter delta C-13 of surface soil along the 400 mm isopleth of mean annual precipitation in China. Biogeosciences 13(17):5057–5064

    Article  CAS  Google Scholar 

  • Kato T, Tang YH, Gu S, Cui XY, Hirota M, Du MY, Li YN, Zhao ZQ, Oikawa T (2004) Carbon dioxide exchange between the atmosphere and an alpine meadow ecosystem on the Qinghai-Tibetan Plateau. China Agricultural and Forest Meteorology 124(1–2):121–134

    Article  Google Scholar 

  • Kuang XX, Jiao JJ (2016) Review on climate change on the Tibetan Plateau during the last half century. J Geophys Res Atmos 121(8):3979–4007

    Article  Google Scholar 

  • Lai J (2013) Canoco 5: a new version of an ecological multivariate data ordination program. Biodivers Sci 21(6):765–768

    Google Scholar 

  • Lan G, Liu C, Wang H, Tang W, Wu X, Yang H, Tu L, Hu B, Cao J, Li Q (2021) The effect of land use change and soil redistribution on soil organic carbon dynamics in karst graben basin of China. J Soil Sediment 21:2511–2524

    Article  Google Scholar 

  • Li HZ, Yan F, Tuo DF, Yao B, Chen JH (2020) The effect of climatic and edaphic factors on soil organic carbon turnover in hummocks based on δ13C on the Qinghai-Tibet Plateau. Sci Total Environ 741:140

    Google Scholar 

  • Liang C, Schimel JP, Jastrow JD (2017) The importance of anabolism in microbial control over soil carbon storage. Nat Microbiol 2:17105

    Article  CAS  Google Scholar 

  • Liu ZP, Shao MA, Wang YQ (2011) Effect of environmental factors on regional soil organic carbon stocks across the Loess Plateau region. China Agric Ecosyst Environ 142(3–4):184–194

    Article  Google Scholar 

  • Lu HY, Wu NQ, Gu ZY, Guo ZT, Wang L, Wu HB, Wang G, Zhou LP, Han JM, Liu TS (2004) Distribution of carbon isotope composition of modern soils on the Qinghai-Tibetan Plateau. Biogeochemistry 70(2):273–297

    Article  CAS  Google Scholar 

  • Lu XF, Ren WD, Hou EQ, Tang SB, Zhang LL, Liu ZF, Lin YB, Fu SL, Wen DZ, Kuang YW (2021) Different effects of canopy and understory nitrogen addition on soil organic carbon and its related processes in a subtropical forest. J Soil Sediment 21:235–244

    Article  CAS  Google Scholar 

  • Lu X, Fan J, Yan Y, Wang X (2013) Responses of soil CO2 fluxes to short-term experimental warming in alpine steppe ecosystem, Northern Tibet. Plos One 8(3)

  • Piao SL, Tan K, Nan HJ, Ciais P, Fang JY, Wang T, Vuichard N, Zhu BA (2012) Impacts of climate and CO2 changes on the vegetation growth and carbon balance of Qinghai-Tibetan grasslands over the past five decades. Glob Planet Change 98–99:73–80

    Article  Google Scholar 

  • Powers JS, Schlesinger WH (2002) Geographic and vertical patterns of stable carbon isotopes in tropical rain forest soils of Costa Rica. Geoderma 109(1–2):141–160

    Article  CAS  Google Scholar 

  • Pries CEH, Castanha C, Porras RC, Torn MS (2017) The whole-soil carbon flux in response to warming. Science 355(6332):1420–1422

    Article  CAS  Google Scholar 

  • Qin J, Yang K, Liang SL, Guo XF (2009) The altitudinal dependence of recent rapid warming over the Tibetan Plateau. Clim Change 97(1–2):321–327

    Article  Google Scholar 

  • Qiu J (2008) China: The third pole. Nature 454(7203):393–396

    Article  CAS  Google Scholar 

  • Rao ZG, Guo WK, Cao JT, Shi FX, Jiang H, Li CZ (2017) Relationship between the stable carbon isotopic composition of modern plants and surface soils and climate: a global review. Earth-Sci Rev 165:110–119

    Article  CAS  Google Scholar 

  • Schimel DS, Braswell BH, Holland EA, McKeown R, Ojima DS, Painter TH, Parton WJ, Townsend AR (1994) Climatic, edaphic, and biotic controls over storage and turnover of carbon in soils. Glob Biogeochem Cycle 8(3):279–293

    Article  CAS  Google Scholar 

  • Shi XZ, Yu DS, Xu SX, Warner ED, Wang HJ, Sun WX, Zhao YC, Gong ZT (2010) Cross-reference for relating genetic soil classification of China with WRB at different scales. Geoderma 155(3–4):344–350

    Article  Google Scholar 

  • Sun W, Xu Z, Ibell P, Bally I (2021) Genetic and environmental influence on foliar carbon isotope composition, nitrogen availability and fruit yield of 5-year-old mango plantation in tropical Australia. J Soil Sediment 21:1609–1620

    Article  CAS  Google Scholar 

  • Torn MS, Lapenis AG, Timofeev A, Fischer ML, Babikov BV, Harden JW (2002) Organic carbon and carbon isotopes in modern and 100-year-old-soil archives of the Russian steppe. Glob Change Biol 8(10):941–953

    Article  Google Scholar 

  • Wang C, Houlton BZ, Liu DW, Hou JF, Cheng WX, Bai E (2018) Stable isotopic constraints on global soil organic carbon turnover. Biogeosciences 15(4):987–995

    Article  CAS  Google Scholar 

  • Wang C, Wei HW, Liu DW, Luo WT, Hou JF, Cheng WX, Han XG, Bai E (2017) Depth profiles of soil carbon isotopes along a semi-arid grassland transect in northern China. Plant Soil 417(1–2):43–52

    Article  CAS  Google Scholar 

  • Wang C, Zhao W, Cui Y (2020) Changes in the seasonally frozen ground over the Eastern Qinghai-Tibet Plateau in the past 60 years. Front Earth Sci 8:270

    Article  CAS  Google Scholar 

  • Wang SQ, Fan JW, Song MH, Yu GR, Zhou L, Liu JY, Zhong HP, Gao LP, Hu ZM, Wu WX, Song T (2013) Patterns of SOC and soil 13C and their relations to climatic factors and soil characteristics on the Qinghai-Tibetan Plateau. Plant Soil 363(1–2):243–255

    Article  CAS  Google Scholar 

  • Werth M, Kuzyakov Y (2010) 13C fractionation at the root-microorganisms-soil interface: a review and outlook for partitioning studies. Soil Biol Biochem 42(9):1372–1384

    Article  CAS  Google Scholar 

  • Xia S, Song Z, Li Q, Guo L, Yu C, Singh BP, Fu X, Chen C, Wang Y, Wang H (2021) Distribution, sources, and decomposition of soil organic matter along a salinity gradient in estuarine wetlands characterized by C: N ratio, δ13C-δ15N, and lignin biomarker. Glob Change Biol 27:417–434

    Article  Google Scholar 

  • Xu X, Shi Z, Li D, Rey A, Ruan H, Craine JM, Liang J, Zhou J, Luo Y (2016) Soil properties control decomposition of soil organic carbon: results from data-assimilation analysis. Geoderma 262:235–242

    Article  CAS  Google Scholar 

  • Yang S, Liu L, Chen H, Tang G, Luo Y, Liu N, Cheng T, Li D (2021) Variability and environmental significance of organic carbon isotopes in Ganzi loess since the last interglacial on the eastern Tibetan Plateau. CATENA 196:104866

    Article  CAS  Google Scholar 

  • Yang YH, Fang JY, Tang YH, Ji CJ, Zheng CY, He JS, Zhu BA (2008) Storage, patterns and controls of soil organic carbon in the Tibetan grasslands. Glob Change Biol 14(7):1592–1599

    Article  Google Scholar 

  • Yang YH, Ji CJ, Chen LY, Ding JZ, Cheng XL, Robinson D (2015) Edaphic rather than climatic controls over 13C enrichment between soil and vegetation in alpine grasslands on the Tibetan Plateau. Funct Ecol 29(6):839–848

    Article  Google Scholar 

  • Zhang KR, Dang HS, Zhang QF, Cheng XL (2015) Soil carbon dynamics following land-use change varied with temperature and precipitation gradients: evidence from stable isotopes. Glob Change Biol 21(7):2762–2772

    Article  Google Scholar 

  • Zhao YF, Wang X, Ou YS, Jia HX, Li J, Shi CM, Liu Y (2019) Variations in soil δ13C with alpine meadow degradation on the eastern Qinghai-Tibet Plateau. Geoderma 338:178–186

    Article  CAS  Google Scholar 

  • Zhao YF, Wang X, Jiang SL, Zhou XH, Liu HY, Xiao JJ, Hao ZG, Wang KC (2021) Climate and geochemistry interactions at different altitudes influence soil organic carbon turnover times in alpine grasslands. Agric Ecosyst Environ 320:107591

    Article  CAS  Google Scholar 

  • Zhao YF, Wang X, Jiang SL, Xiao JJ, Li J, Zhou XH, Liu HY, Hao ZG, Wang KC (2022) Soil development mediates precipitation control on plant productivity and diversity in alpine grasslands. Geoderma 412:115721

    Article  CAS  Google Scholar 

  • Zhou XH, Talley M, Luo YQ (2009) Biomass, litter, and soil respiration along a precipitation gradient in southern Great Plains, USA. Ecosystems 12(8):1369–1380

    Article  CAS  Google Scholar 

Download references

Funding

Financial support for this research was provided by the National Natural Science Foundation of China Grant (NSFC 41971051), the Second Tibetan Plateau Scientific Expedition and Research (2019QZKK0603; 2021QZKK0201) and the key project of Key Laboratory of Strategic Mineral Resources of the Upper Yellow River, MNR (GCZH2021143).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xia Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Responsible editor: Xiaoqi Zhou

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 927 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Wang, X., Li, J. et al. Variation of δ13C and soil organic carbon under different precipitation gradients in alpine grassland on the Qinghai–Tibetan Plateau. J Soils Sediments 22, 2219–2228 (2022). https://doi.org/10.1007/s11368-022-03223-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-022-03223-x

Keywords

Navigation