Skip to main content
Log in

Activation of peroxydisulfate by MIL-101(Fe)/g-C3N4 for 2-chlorophenol–contaminated soil: parameter optimization by response surface methodology

  • Soils, Sec 3 • Remediation and Management of Contaminated or Degraded Lands • Research Article
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

Soil organic matter pollution is a serious threat to the human living environment. The purpose of this paper is to investigate the effect of MIL-101(Fe)/g-C3N4 catalyzed peroxynitrite degradation of 2-chlorophenol in soil and to analyze the reaction mechanism and further to explore the optimal parameters of this reaction system with utilizing the mathematical model.

Methods

MIL-101(Fe)/g-C3N4 was successfully obtained by hydrothermal synthesis method by growing MIL-101(Fe) on the surface of g-C3N4 to catalyze the degradation of 2-CP (2-chlorophenol) in soil by sodium persulfate. The influence factors on the removal rate of 2-CP were analyzed by the response surface methodology (RSM) and combined with theoretical calculations. RSM can be used to model continuous variable surfaces with less data and determine the optimal level range.

Results

MIL-101(Fe)/g-C3N4 had a good catalytic performance due to its good catalytic properties and the adsorption of g-C3N4 on 2-CP in the system and made the best removal rate of 2-CP increase to 91.2%. The correlation of model fitting results was significant, and the verification of its optimal parameters yielded results with an error of only 4.1%.

Conclusion

Further studies revealed that SO4•− and OH were the reactive radicals, and SO4•− was the dominant, which impelled Fe2+ and Fe3+ to interconvert in the complex system. Possible degradation pathways were derived by analyzing the intermediates. Generally, this experiment provides some ideas for future research of MOFs in soil organic pollutant removal systems.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ahmad M, Rajapaksha AU, Lim JE, Zhang M, Bolan N, Mohan D, Vithanage M, Lee SS, Ok YS (2014) Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere 99:19–33

    Article  CAS  Google Scholar 

  • Amat AM, Arques A, Bossmann SH, Braun AM, Gob S, Miranda MA, Oliveros E (2004) Oxidative degradation of 2,4-xylidine by photosensitization with 2,4,6-triphenylpyrylium: homogeneous and heterogeneous catalysis. Chemosphere 57:1123–1130

    Article  CAS  Google Scholar 

  • Barzegar G, Jorfi S, Zarezade V, Khatebasreh M, Mehdipour F, Ghanbari F (2018) 4-Chlorophenol degradation using ultrasound/peroxymonosulfate/nanoscale zero valent iron: reusability, identification of degradation intermediates and potential application for real wastewater. Chemosphere 201:370–379

    Article  CAS  Google Scholar 

  • Bhandari G, Atreya K, Vasickova J, Yang X, Geissen V (2021) Ecological risk assessment of pesticide residues in soils from vegetable production areas: a case study in S-Nepal. Sci Total Environ 788:147921

    Article  CAS  Google Scholar 

  • Cao J, Lai L, Lai B, Yao G, Chen X, Song L (2019) Degradation of tetracycline by peroxymonosulfate activated with zero-valent iron: performance, intermediates, toxicity and mechanism. Chem Eng J 364:45–56

    Article  CAS  Google Scholar 

  • Cao X, Tan C, Sindoro M, Zhang H (2017) Hybrid micro-/nano-structures derived from metal-organic frameworks: preparation and applications in energy storage and conversion. Chemical Society Reviews 46

  • Cengiz MF, Baslar M, Basancelebi O, Kilicli M (2018) Reduction of pesticide residues from tomatoes by low intensity electrical current and ultrasound applications. Food Chem 267:60–66

    Article  CAS  Google Scholar 

  • Chen L, Hu X, Yang Y, Jiang C, Bian C, Liu C, Zhang M, Cai T (2018a) Degradation of atrazine and structurally related s-triazine herbicides in soils by ferrous-activated persulfate: kinetics, mechanisms and soil-types effects. Chem Eng J 351:523–531

    Article  CAS  Google Scholar 

  • Chen S, Xiong P, Zhan W, Xiong L (2018b) Degradation of ethylthionocarbamate by pyrite-activated persulfate. Miner Eng 122:38–43

    Article  CAS  Google Scholar 

  • Close ME, Humphries B, Northcott G (2021) Outcomes of the first combined national survey of pesticides and emerging organic contaminants (EOCs) in groundwater in New Zealand 2018. Sci Total Environ 754:142005

    Article  CAS  Google Scholar 

  • Council ITR (2005) Technical and regulatory guidance for in situ chemical oxidation of contaminated soil and groundwater

  • Cui F, Deng Q, Sun L (2015) Prussian blue modified metal–organic framework MIL-101(Fe) with intrinsic peroxidase-like catalytic activity as a colorimetric biosensing platform. RSC Adv 5:98215–98221

    Article  CAS  Google Scholar 

  • Diana P, Jorge R, Ana MS, Miguel S, Stefano DA, Cristina D-M, Francisca R (2021) Valorisation of Salicornia ramosissima biowaste by a green approach an optimizing study using response surface methodology. Sustainable Chemistry and Pharmacy 24:100548

    Article  CAS  Google Scholar 

  • Fu Y, Huang T, Zhang L, Zhu J, Wang X (2015) Ag/g-C3N4 catalyst with superior catalytic performance for the degradation of dyes: a borohydride-generated superoxide radical approach. Nanoscale 7:13723–13733

    Article  CAS  Google Scholar 

  • Gecgel C, Simsek UB, Gozmen B, Turabik M (2019) Comparison of MIL-101(Fe) and amine-functionalized MIL-101(Fe) as photocatalysts for the removal of imidacloprid in aqueous solution. J Iran Chem Soc 16:1735–1748

    Article  CAS  Google Scholar 

  • Giannakoudakis DA, Travlou NA, Secor J, Bandosz TJ (2017) Oxidized g-C3N4 nanospheres as catalytically photoactive linkers in MOF/g-C3N4 composite of hierarchical pore structure. Small 13:1601758

    Article  CAS  Google Scholar 

  • Harmon TC, Burks GA, Aycaguer AC, Jackson K (2001) Thermally enhanced vapor extraction for removing PAHs from lampblack-contaminated soil. Environ Eng Asce 127:986–993

    Article  CAS  Google Scholar 

  • Hasija V, Nguyen VH, Kumar A, Raizada P, Krishnan V, Khan AAP, Singh P, Lichtfouse E, Wang C, Thi Huong P (2021) Advanced activation of persulfate by polymeric g-C3N4 based photocatalysts for environmental remediation: A review. J Hazard Mater 413:125324

    Article  CAS  Google Scholar 

  • Hu H, Miao K, Luo X, Guo S, Yuan X, Pei F, Qian H, Feng G (2021) Efficient Fenton-like treatment of high-concentration chlorophenol wastewater catalysed by Cu-doped SBA-15 mesoporous silica. J Clean Prod 318

  • Hu H, Zhang H, Chen Y, Chen Y, Zhuang L, Ou H (2019) Enhanced photocatalysis degradation of organophosphorus flame retardant using MIL-101(Fe)/persulfate: effect of irradiation wavelength and real water matrixes. Chem Eng J 368:273–284

    Article  CAS  Google Scholar 

  • Hu L, Wang P, Shen T, Wang Q, Wang X, Xu P, Zheng Q, Zhang G (2020) The application of microwaves in sulfate radical-based advanced oxidation processes for environmental remediation: a review. Sci Total Environ 722:137831

    Article  CAS  Google Scholar 

  • Kayan I, Oz NA, Kantar C (2021) Comparison of treatability of four different chlorophenol-containing wastewater by pyrite-Fenton process combined with aerobic biodegradation: Role of sludge acclimation. J Environ Manage 279:111781

    Article  CAS  Google Scholar 

  • Li F, Huang Y, Gao C, Wu X (2021) The enhanced photo-catalytic CO2 reduction performance of g-C3N4 with high selectivity by coupling CoNiSx. Mater Res Bull 144

  • Li X, Guo W, Liu Z, Wang R, Liu H (2016) Fe-based MOFs for efficient adsorption and degradation of acid orange 7 in aqueous solution via persulfate activation. Appl Surf Sci 369:130–136

    Article  CAS  Google Scholar 

  • Li Y, Li J, Pan Y, Xiong Z, Yao G, Xie R, Lai B (2019) Peroxymonosulfate activation on FeCo2S4 modified g-C3N4 (FeCo2S4-CN): mechanism of singlet oxygen evolution for nonradical efficient degradation of sulfamethoxazole. Chem Eng J 384:123361

    Article  CAS  Google Scholar 

  • Li Y, Yuan X, Wang D, Wang H, Wu Z, Jiang L, Mo D, Yang G, Guan R, Zeng G (2018) Recyclable zero-valent iron activating peroxymonosulfate synchronously combined with thermal treatment enhances sludge dewaterability by altering physicochemical and biological properties. Bioresour Technol 262:294–301

    Article  CAS  Google Scholar 

  • Li Y, Zhao X, Yan Y, Yan J, Pan Y, Zhang Y, Lai B (2019) Enhanced sulfamethoxazole degradation by peroxymonosulfate activation with sulfide-modified microscale zero-valent iron (S-mFe0): performance, mechanisms, and the role of sulfur species. Chem Eng J 376

  • Liang C, Liang CP, Chen CC (2009) pH dependence of persulfate activation by EDTA/Fe(III) for degradation of trichloroethylene. J Contam Hydrol 106:173–182

    Article  CAS  Google Scholar 

  • Lin KYA, Hsuan AC, Chung JH (2015) Iron-based metal organic framework, MIL-88A, as a heterogeneous persulfate catalyst for decolorization of Rhodamine B in water. RSC Adv 5:32520–32530

    Article  CAS  Google Scholar 

  • Liu T, Cui K, Chen Y, Li C, Cui M, Yao H, Chen Y, Wang S (2021) Removal of chlorophenols in the aquatic environment by activation of peroxymonosulfate with nMnOx@Biochar hybrid composites: Performance and mechanism. Chemosphere 283:131188

    Article  CAS  Google Scholar 

  • Machado LMM, Lütke SF, Perondi D, Godinho M, Oliveira MLS, Collazzo GC, Dotto GL (2020) Treatment of effluents containing 2-chlorophenol by adsorption onto chemically and physically activated biochars. J Environ Chem Eng 8

  • Manjarres-Lopez DP, Andrades MS, Sanchez-Gonzalez S, Rodriguez-Cruz MS, Sanchez-Martin MJ, Herrero-Hernandez E (2021) Assessment of pesticide residues in waters and soils of a vineyard region and its temporal evolution. Environ Pollut 284:117463

    Article  CAS  Google Scholar 

  • Martin FL, Martinez EZ, Stopper H, Garcia SB, Uyemura SA, Kannen V (2018) Increased exposure to pesticides and colon cancer: Early evidence in Brazil. Chemosphere 209:623–631

    Article  CAS  Google Scholar 

  • Mehdi A, Farshid G, Mahsa M (2015) Photocatalysis assisted by peroxymonosulfate and persulfate for benzotriazole degradation: effect of pH on sulfate and hydroxyl radicals. Water Sci Technol 72:2095–2102

    Article  CAS  Google Scholar 

  • Miklos DB, Remy C, Jekel M, Linden KG, Drewes JE, Hubner U (2018) Evaluation of advanced oxidation processes for water and wastewater treatment - a critical review. Water Res 139:118–131

    Article  CAS  Google Scholar 

  • Ming y, Xue W, Aibibai A, Zhan z, Leping D (2021) Saponification of peony seed oil using response surface methodology. Ind Crops Prod 173:114134

    Article  CAS  Google Scholar 

  • Ministry of ecological environment of the people's Republic of China (2018) Soil environmental quality control standard for soil pollution risk of construction land. GB36600-2018

  • Peng H, Zhang W, Liu L, Lin K (2017) Degradation performance and mechanism of decabromodiphenyl ether (BDE209) by ferrous-activated persulfate in spiked soil. Chem Eng J 307:750–755

    Article  CAS  Google Scholar 

  • Praful B, Shyam K, Jaykumar B, Dinesh B (2021) Ceramic membranes (Al2O3/TiO2) used for separation glycerol from biodiesel using response surface methodology. Materials Today: Proceedings

  • Qi C, Yu G, Huang J, Wang B, Wang Y, Deng S (2018) Activation of persulfate by modified drinking water treatment residuals for sulfamethoxazole degradation. Chem Eng J 353:490–498

    Article  CAS  Google Scholar 

  • Qiao S, Min L, Li K, Han Y, Yi Z, Chai F, Song C, Zhang G, Guo X (2017) Synthesis of Fe/M (M = Mn Co, Ni) bimetallic metal organic frameworks and their catalytic activity for phenol degradation under mild conditions. Inorganic Chemistry Frontiers 4:144–153

    Article  CAS  Google Scholar 

  • Rastogi A, Al-Abed SR, Dionysiou DD (2009) Sulfate radical-based ferrous-peroxymonosulfate oxidative system for PCBs degradation in aqueous and sediment systems. Appl Catal B 85:171–179

    Article  CAS  Google Scholar 

  • Rayaroth MP, Lee C-S, Aravind UK, Aravindakumar CT, Chang Y-S (2017) Oxidative degradation of benzoic acid using Fe 0 - and sulfidized Fe 0 -activated persulfate: a comparative study. Chem Eng J 315:426–436

    Article  CAS  Google Scholar 

  • Ren W, Nie G, Zhou P, Zhang H, Wang S (2020) The intrinsic nature of persulfate activation and N-doping in carbocatalysis. Environ Sci Technol 54:6438–6447

    Article  CAS  Google Scholar 

  • Singh R, Misra V, Mudiam MK, Chauhan LK, Singh RP (2012) Degradation of gamma-HCH spiked soil using stabilized Pd/Fe0 bimetallic nanoparticles: pathways, kinetics and effect of reaction conditions. J Hazard Mater 237–238:355–364

    Article  CAS  Google Scholar 

  • Sun P, Liu H, Feng M, Guo L, Zhai Z, Fang Y, Zhang X, Sharma VK (2019) Nitrogen-sulfur co-doped industrial graphene as an efficient peroxymonosulfate activator: singlet oxygen-dominated catalytic degradation of organic contaminants. Appl Catal B 251:335–345

    Article  CAS  Google Scholar 

  • Tan C, Gao N, Deng Y, An N, Deng J (2012) Heat-activated persulfate oxidation of diuron in water. Chem Eng J 203:294–300

    Article  CAS  Google Scholar 

  • Tang J, Tang L, Feng H, Zeng G, Dong H, Zhang C, Huang B, Deng Y, Wang J, Zhou Y (2016) pH-dependent degradation of p-nitrophenol by sulfidated nanoscale zerovalent iron under aerobic or anoxic conditions. J Hazard Mater 320:581–590

    Article  CAS  Google Scholar 

  • Tang J, Yang M, Yang M, Wang J, Dong W, Wang G (2015) Heterogeneous Fe-MIL-101 catalyst for efficient one-pot four-component coupling synthesis of highly substituted pyrroles. ChemInform 39:4919–4923

    CAS  Google Scholar 

  • Tsitonaki A, Petri B, Crimi M, Mosbaek H, Siegrist RL, Bjerg PL (2010) In situ chemical oxidation of contaminated soil and groundwater using persulfate: a review. Crit Rev Environ Sci Technol 40:55–91

    Article  CAS  Google Scholar 

  • Van Aken P, Lambert N, Van den Broeck R, Degrève J, Dewil R (2019) Advances in ozonation and biodegradation processes to enhance chlorophenol abatement in multisubstrate wastewaters: a review. Environ Sci: Water Res Technol 5:444–481

    Google Scholar 

  • Vidonish JE, Zygourakis K, Masiello CA, Sabadell G, Alvarez PJJ (2016) Thermal treatment of hydrocarbon-impacted soils: a review of technology innovation for sustainable remediation. Engineering 2:426–437

    Article  CAS  Google Scholar 

  • Wang D, Huang R, Liu W (2015) Fe-based MOFs for photocatalytic CO2 reduction: role of coordination unsaturated sites and dual excitation pathways. The Catalyst Review Newsletter 4:4254–4260

    Google Scholar 

  • WenJun Z, FuBin J, JianFeng O (2011) Global pesticide consumption and pollution: with China as a focus. Proceedings of the International Academy of Ecology and Environmental Sciences 1:125–144

    Google Scholar 

  • Wu Z, Wang Y, Xiong Z, Ao Z, Pu S, Yao G, Lai B (2020) Core-shell magnetic Fe3O4@Zn/Co-ZIFs to activate peroxymonosulfate for highly efficient degradation of carbamazepine. Applied Catalysis B: Environmental 277

  • Yang C, You X, Cheng J, Zheng H, Chen Y (2017) A novel visible-light-driven In-based MOF/graphene oxide composite photocatalyst with enhanced photocatalytic activity toward the degradation of amoxicillin. Appl Catal B 200:673–680

    Article  CAS  Google Scholar 

  • Yang W, Li M, Zhang Q, Xiang W (2018) Mechanism of degradation of 3,4-dime-thylaniline by K2FeO4. China Environ Sci 38:1744–1751

    CAS  Google Scholar 

  • Yuan Y, Tao H, Fan J, Ma L (2015) Degradation of p-chloroaniline by persulfate activated with ferrous sulfide ore particles. Chem Eng J 268:38–46

    Article  CAS  Google Scholar 

  • Zeng T, Zhang XL, Wang SH, Niu HY, Cai YQ (2015) Spatial confinement of a Co3O4 catalyst in hollow metalorganic frameworks as a nanoreactor for improved degradation of organic pollutants. Environ Sci Technol 49:2350–2357

    Article  CAS  Google Scholar 

  • Zhang Y, Tran HP, Du X, Hussain I, Huang S, Zhou S, Wen W (2017) Efficient pyrite activating persulfate process for degradation of p-chloroaniline in aqueous systems: a mechanistic study. Chem Eng J 308:1112–1119

    Article  CAS  Google Scholar 

  • Zhao C, Dong Y, Feng Y, Li Y, Dong Y (2019) Thermal desorption for remediation of contaminated soil: a review. Chemosphere 221:841–855

    Article  CAS  Google Scholar 

  • Zhao D, Liao X, Yan X, Huling SG, Chai T, Tao H (2013) Effect and mechanism of persulfate activated by different methods for PAHs removal in soil. J Hazard Mater 254–255:228–235

    Article  CAS  Google Scholar 

  • Zhao F, Liu Y, Hammouda SB, Doshi B, Guijarro N, Min X, Tang C-J, Sillanpää M, Sivula K, Wang S (2020) MIL-101(Fe)/g-C3N4 for enhanced visible-light-driven photocatalysis toward simultaneous reduction of Cr(VI) and oxidation of bisphenol A in aqueous media. Applied Catalysis B: Environmental 272

  • Zhou Y, Wang X, Zhu C, Dionysiou DD, Zhao G, Fang G, Zhou D (2018) New insight into the mechanism of peroxymonosulfate activation by sulfur-containing minerals: role of sulfur conversion in sulfate radical generation. Water Res 142:208–216

    Article  CAS  Google Scholar 

  • Zhu S, Li X, Kang J, Duan X, Wang S (2019) Persulfate activation on crystallographic manganese oxides: mechanism of singlet oxygen evolution for nonradical selective degradation of aqueous contaminants. Environ Sci Technol 53:307–315

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Key Research and Development Program (No. 2018YFC1802605), Sichuan Provincial Major Science and Technology Project (No.22QYCX0088), International Cooperation Project of Sichuan Province (No. 2019YFH1027), Sichuan University-Yibin City school and City Strategic Cooperation Project (N0.2019 CDYB-26, No.2020CDYB-9).

Author information

Authors and Affiliations

Authors

Contributions

Quanfeng Liu: writing the original draft, software, and methodology. Yinying Jiang, Chengwei Zhong, Senxu Ding, Peng Zhou, Yuanxiao Jin: validation. Jiang Yu: supervision, writing, reviewing, and editing.

Corresponding author

Correspondence to Jiang Yu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Responsible editor: Zhaohui Wang

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Q., Yu, J., Jiang, Y. et al. Activation of peroxydisulfate by MIL-101(Fe)/g-C3N4 for 2-chlorophenol–contaminated soil: parameter optimization by response surface methodology. J Soils Sediments 22, 2009–2021 (2022). https://doi.org/10.1007/s11368-022-03217-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-022-03217-9

Keywords

Navigation