Skip to main content
Log in

The assessment and source apportionment of metals in the water-level fluctuation zone of the upper reaches Yangtze mainstream

  • Soils, Sec 3 • Remediation and Management of Contaminated or Degraded Lands • Research Article
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

To investigate the contamination status and potential sources of soil metals of fluctuation zones in the upper reaches of the Yangtze River.

Materials and methods

The contents of metals (Cd, Cr, Cu, Ni, Pb, and Zn) in soil samples from 13 sampling sites (S1–S13) distributed along the upper reaches of the Yangtze mainstream were examined to evaluate the spatial distribution, environmental risk, and possible sources.

Results and discussion

The regional concentrations of six metals were 0.36, 61.00, 74.82, 44.18, 28.15, and 110.98 mg kg−1 for Cd, Cr, Cu, Ni Pb, and Zn, respectively. The upper and lower reaches (S2, S8, and S13) had higher concentrations of Cd, Pb, and Zn, which was proven to be derived from agricultural activities and mineral exploitation. The middle reaches (S3, S4, and S6) had higher concentrations of Cu, Ni, and Cr, which were mainly derived from crustal material, mineral exploitation, and industrial waste. In addition, the concentrations of Cd and Cu were significantly high in the soils at all sampling sites, which suggested that Cd and Cu posed a greater threat to the ecological environment in the study area. The potential ecological risk index for all metals indicated that this region posed low and moderate ecological risk.

Conclusions

In general, attention should be devoted to the environmental threat of metals, especially Cd, in the water-level fluctuation zone of the upper reaches of the Yangtze mainstream.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akindele EO, Omisakin OD, Oni OA, Aliu OO, Omoniyi GE, Akinpelu OT (2020) Heavy metal toxicity in the water column and benthic sedime. Ecotoxicol Environ Saf 190:110153

    Article  CAS  Google Scholar 

  • Bhuiyan MAH, Parvez L, Islam MA, Dampare SB, Suzuk S (2010) Heavy metal pollution of coal mine-affected agricultural soils in the northern part of Bangladesh. J Hazard Mater 173:384–392

    Article  CAS  Google Scholar 

  • Bing H, Zhou J, Wu Y, Wang X, Sun H, Li R (2016) Current state, sources, and potential risk of heavy metals in sediments of Three Gorges Reservoir, China. Environ Pollut 214:485–496

    Article  CAS  Google Scholar 

  • Chen J, Wei F, Zheng C, Wu Y, Adriano DC (1991) Background concentrations of elements in soils of China. Water Air Soil Pollut 57:699–712

    Article  Google Scholar 

  • Chen J, Wang P, Wang C, Wang X, Miao L, Liu S, Yuan Q (2019) Dam construction alters function and community composition of diazotrophs in riparian soils across an environmental gradient. Soil Biol Biochem 132:14–23

    Article  CAS  Google Scholar 

  • Chen J, Wang P, Wang C, Wang X, Miao L, Liu S, Yuan Q, Sun S (2020) Distinct assembly mechanisms underlie similar biogeographic patterns of rare and abundant bacterioplankton in cascade reservoirs of a large river. Front Microbiol 11:158

    Article  Google Scholar 

  • Daskalakis KD, O’Connor TP (1995) Normalization and elemental sediment contamination in the coastal United States. Environ Sci Technol 29:470–477

    Article  CAS  Google Scholar 

  • do Nascimento CWA, Xing BS (2006) Phytoextraction: a review on enhanced metal availability and plant accumulation. Piracicaba, Brazil

  • Förstner U, Ahlf W, Calmano W, Kersten M (1990) Sediment criteria development-contributions from environmental geochemistry to water quality management. In: Heling D, Rothe P, Förstner U, Stoffers P (eds) Sed Environ Geochem. Springer, Berlin, Hidelberg, pp 311–338

    Chapter  Google Scholar 

  • Frémion F, Bordas F, Mourie B, Lenain JF, Kestens T, Courtin-Nomade A (2016) Influence of dams on sediment continuity: a study case of a natural metallic contamination. Sci Total Environ 547:282–294

    Article  CAS  Google Scholar 

  • Gao Q, Li Y, Cheng Q, Yu M, Hu B, Wang Z, Yu Z (2016) Analysis and assessment of the nutrients, biochemical indexes and heavy metals in the Three Gorges Reservoir, China, from 2008 to 2013. Water Res 92:262–274

    Article  CAS  Google Scholar 

  • Haghnazar H, Sangsefidi Y, Mehraein M, Tavakol-Davani H (2020) Evaluation of infilling and replenishment of river sand mining pits. Environ Earth Sci 79:362

    Article  Google Scholar 

  • Haghnazar H, Pourakbar M, Mahdavianpour M, Aghayani E (2021a) Spatial distribution and risk assessment of agricultural soil pollution by hazardous elements in a transboundary river basin. Environ Monit Assess 193:158

    Article  CAS  Google Scholar 

  • Haghnazar H, Hudson-Edwards KA, Kumar V, Pourakbar M, Mahdavianpour M, Aghayani E (2021b) Potentially toxic elements contamination in surface sediment and indigenous aquatic macrophytes of the Bahmanshir River, Iran: appraisal of phytoremediation capability. Chemosphere 285:131446

    Article  CAS  Google Scholar 

  • Haghnazar H, Johannesson KH, González-Pinzón R, Pourakbar M, Aghayani E, Rajabi A, Hashemi AA (2022a) Groundwater geochemistry, quality, and pollution of the largest lake basin in the Middle East: comparison of PMF and PCA-MLR receptor models and application of. Chemosphere 288:132489

    Article  CAS  Google Scholar 

  • Haghnazar H, Cunningham JA, Kumar V, Aghayani E, Mehraein M (2022b) COVID-19 and urban rivers: effects of lockdown period on surface water pollution and quality- a case study of the Zarjoub River, north of Iran. Environ Sci Pollut Res Published Online. https://doi.org/10.1007/s11356-021-18286-5

    Article  Google Scholar 

  • Hakanson L (1980) An ecological risk index for aquatic pollution control. Sedimentol Approach Water Res 14:975–1001

    Google Scholar 

  • Hu B, Yang Z, Wang H, Sun X, Bi N, Li G (2009) Sedimentation in the Three Gorges Dam and the future trend of Changjiang (Yangtze River) sediment flux to the sea. Hydrol Earth Syst Sci 13:2253–2264

    Article  Google Scholar 

  • Hu B, Shao S, Fu Z, Li Y, Ni H, Chen S, Zhou Y, Jin B, Shi Z (2019) Identifying heavy metal pollution hot spots in soil-rice systems: a case study in south of Yangtze River Delta, China. Sci Total Environ 658:614–625

    Article  CAS  Google Scholar 

  • Huang X, Sillanpää M, Duo B, Gjessing ET (2008) Water quality in the Tibetan Plateau: metal contents of four selected rivers. Environ Pollut 156:270–277

    Article  CAS  Google Scholar 

  • Huang Q, Yu Y, Wan Y, Wang Q, Zhang L, Qiao Y, Su D, Li H (2018) Effects of continuous fertilization on bioavailability and fractionation of cadmium in soil and its uptake by rice (Oryza Sativa L.). J Environ Manage 215:13–21

    Article  CAS  Google Scholar 

  • Jiang G, Lei X, Song S, Zhu C, Wu L (2008) Effects of long-term low-dose cadmium exposure on genomic DNA methylation in human embryo lung fibroblast cells. Toxicology 244:49–55

    Article  CAS  Google Scholar 

  • Kostka A, Leśniak A (2020) Spatial and geochemical aspects of heavy metal distribution in lacustrine sediments, using the example of Lake Wigry (Poland). Chemosphere 240:124879

    Article  CAS  Google Scholar 

  • Li K, Zhu C, Wu L, Huang L (2013) Problems caused by the three Gorges Dam construction in the Yangtze River basin: a review. Environ Rev 21:127–135

    Article  Google Scholar 

  • Li D, Lu XX, Yang X, Chen L, Lin L (2018) Sediment load responses to climate variation and cascade reservoirs in the Yangtze River: a case study of the Jinsha River. Geomorphology 322:41–52

    Article  Google Scholar 

  • Liu M, He Y, Baumann Z, Zhang Q, Wang X (2020) The impact of the Three Gorges Dam on the fate of metal contaminants across the river-ocean continuum. Water Res 185:116295

    Article  CAS  Google Scholar 

  • Maavara T, Lauerwald R, Regnier P, Van Cappellen P (2017) Global perturbation of organic carbon cycling by river damming. Nat Commun 8:15347–15356

    Article  CAS  Google Scholar 

  • Müller G (1981) Die schwermetallbelastung der sedimente des neckars und seiner nebenflüsse: einebestandsaufnahme. Chem Zeitung 105:157–164

    Google Scholar 

  • Pan H, Lu X, Lei K (2017) A comprehensive analysis of heavy metals in urban road dust of Xi’an, China: contamination, source apportionment and spatial distribution. Sci Total Environ 609:1361–1369

    Article  CAS  Google Scholar 

  • Qu B, Song J, Yuan H, Li X, Li N, Duan L (2018) Intensive anthropogenic activities had affected Daya Bay in South China Sea since the 1980s: evidence from heavy metal contaminations. Mar Pollut Bull 135:318–331

    Article  CAS  Google Scholar 

  • Song Y, Ji J, Mao C, Yang Z, Yuan X, Ayoko GA, Frost RL (2010) Heavy metal contamination in suspended solids of Changjiang River - environmental implications. Geoderma 159:286–295

    Article  CAS  Google Scholar 

  • Ustaoğlu F, Islam MS (2020) Potential toxic elements in sediment of some rivers at Giresun, Northeast Turkey: a preliminary assessment for ecotoxicological status and health risk. Ecol Indic 113:106237

    Article  CAS  Google Scholar 

  • Varol M (2011) Assessment of heavy metal contamination in sediments of the Tigris River (Turkey) using pollution indices and multivariate statistical techniques. J Hazard Mater 195:355–364

    Article  CAS  Google Scholar 

  • Wan M, Hu W, Wang H, Tian K, Huang B (2021) Comprehensive assessment of heavy metal risk in soil-crop systems along the Yangtze River in Nanjing, Southeast China. Sci Total Environ 780:146567

    Article  CAS  Google Scholar 

  • Wang L, Wang Y, Xu C, An Z, Wang S (2011) Analysis and evaluation of the source of heavy metals in water of the River Changjiang. Environ Monit Assess 173:301–313

    Article  CAS  Google Scholar 

  • Wang L, Wang Y, Zhang W, Xu C, An Z (2014) Multivariate statistical techniques for evaluating and identifying the environmental significance of heavy metal contamination in sediments of the Yangtze River, China. Environ Earth Sci 71:1183–1193

    Article  CAS  Google Scholar 

  • Wang T, Pan J, Liu X (2017) Characterization of heavy metal contamination in the soil and sediment of the Three Gorges Reservoir, China. J Environ Sci Health A Tox Hazard Subst Environ Eng 52:201–209

    Article  CAS  Google Scholar 

  • Wu W, Zheng H, Xu S, Yang J, Liu W (2013) Trace element geochemistry of riverbed and suspended sediments in the upper Yangtze River. J Geochem Explor 124:67–78

    Article  CAS  Google Scholar 

  • Xiao H, Shahab A, Li J, Xi B, Sun X, He H, Yu G (2019) Distribution, ecological risk assessment and source identification of heavy metals in surface sediments of Huixian karst wetland, China. Ecotox Environ Safe 185:109700

    Article  CAS  Google Scholar 

  • Yan H, Huang Y, Wang G, Zhang X, Shang M, Feng L, Dong J, Shan K, Wu D, Zhou B, Yuan Y (2016) Water eutrophication evaluation based on rough set and petri nets: a case study in Xiangxi-River, Three Gorges Reservoir. Ecol Indic 69:463–472

    Article  CAS  Google Scholar 

  • Ye C, Li S, Zhang Y, Zhang Q (2011) Assessing soil heavy metal pollution in the water-level-fluctuation zone of the Three Gorges Reservoir, China. J Hazard Mater 191:366–372

    Article  CAS  Google Scholar 

  • Yin D, Peng F, He T, Xu Y, Wang Y (2020) Ecological risks of heavy metals as influenced by water-level fluctuations in a polluted plateau wetland, southwest China. Sci Total Environ 742:140319

    Article  CAS  Google Scholar 

  • Yuan Q, Wang P, Wang C, Chen J, Wang X, Liu S, Feng T (2019) Metals and metalloids distribution, source identification, and ecological risks in riverbed sediments of the Jinsha River, China. J Geochem Explor 205:106334

    Article  CAS  Google Scholar 

  • Yuan Q, Wang P, Wang C, Chen J, Wang X, Liu S (2021) Spatial distribution and solubilization characteristics of metal(loid)s in riparian soils within reservoirs along the middle Jinsha River. J Soils Sediments 21:3515–3527

    Article  CAS  Google Scholar 

  • Zhang J, Liu C (2002) Riverine composition and estuarine geochemistry of particulate metals in China-weathering features, anthropogenic impact and chemical fluxes. Estuar Coast Shelf Sci 54:1051–1070

    Article  CAS  Google Scholar 

  • Zhang W, Feng H, Chang J, Qu J, Xie H, Yu L (2009) Heavy metal contamination in surface sediments of Yangtze River intertidal zone: an assessment from different indexes. Environ Pollut 157:1533–1543

    Article  CAS  Google Scholar 

  • Zhang Q, Luo Z (2011) The environmental changes and mitigation actions in the Three Gorges Reservoir region, China. Environ Sci Policy 8:1132–1138

    Article  Google Scholar 

  • Zhang Y, Liao J, Pei Z, Lu X, Xu S, Wang X (2019) Effect of dam construction on nutrient deposition from a small agricultural karst catchment. Ecol Indic 107:105548

    Article  CAS  Google Scholar 

  • Zhao X, Li T, Zhang T, Luo W, Li J (2017a) Distribution and health risk assessment of dissolved heavy metals in the Three Gorges Reservoir, China (section in the main urban area of Chongqing). Environ Sci Pollut Res 24:2697–2710

    Article  CAS  Google Scholar 

  • Zhao X, Gao B, Xu D, Gao L, Yin S (2017b) Heavy metal pollution in sediments of the largest reservoir (Three Gorges Reservoir) in China: a review. Environ Sci Pollut Res 24:20844–20858

    Article  CAS  Google Scholar 

  • Zhao L, Gong D, Zhao W, Lin L, Yang W, Guo W, Tang X, Li Q (2020a) Spatial-temporal distribution characteristics and health risk assessment of heavy metals in surface water of the Three Gorges Reservoir, China. Sci Total Environ 704:134883

    Article  CAS  Google Scholar 

  • Zhao Z, Li S, Xue L, Liao J, Zhao J, Wu M, Wang M, Sun J, Zheng Y, Yang Q (2020b) Effects of dam construction on arsenic mobility and transport in two large rivers in Tibet, China. Sci Total Environ 741:140406

    Article  CAS  Google Scholar 

  • Zhu C, Wen H, Zhang Y, Fan H, Fu S, Xu J, Qin X (2013) Characteristics of Cd isotopic compositions and their genetic significance in the lead-zinc deposits of SW China. Sci China Earth Sci 56:2056–2065

    Article  CAS  Google Scholar 

  • Zhu Y, Yang Y, Liu M, Zhang M, Wang J (2015) Concentration, distribution, source, and risk assessment of PAHs and heavy metals in surface water from the Three Gorges Reservoir, China. Hum Ecol Risk Assess 21:1593–1607

    Article  CAS  Google Scholar 

  • Zhuang S, Lu X, Yu B, Fan X, Yang Y (2021) Ascertaining the pollution, ecological risk and source of metal(loid)s in the upstream. Ecol Indic 125:107502

    Article  CAS  Google Scholar 

  • Zoller WH, Gladney ES, Duce RA (1974) Atmospheric concentrations and sources of trace metals at the south Pole. Science 183:198–200

    Article  CAS  Google Scholar 

Download references

Funding

This study is supported by the National Key Research and Development Program of China (2016YFC0502208), the Innovative Group Project of Hubei Province (2020CFA046), the Doctoral Scientific Research Foundation of Hubei University of Technology (BSQD2019041) and the International Collaborative Research Fund for Young Scholars in the Innovation Demonstration Base of Ecological Environment Geotechnical and Ecological Restoration of Rivers and Lakes.

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed to the study conception and design. PW conceived the experiments. PW, LM, HY, and QH performed the experiments and analyzed data. YL, WJ, JW, and QW contributed materials. PW wrote the paper; and HX revised the paper. All the authors approved the submitted version.

Corresponding author

Correspondence to Henglin Xiao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Responsible editor: Maria Manuela Abreu

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, P., Ma, L., Huang, Q. et al. The assessment and source apportionment of metals in the water-level fluctuation zone of the upper reaches Yangtze mainstream. J Soils Sediments 22, 1724–1734 (2022). https://doi.org/10.1007/s11368-022-03181-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-022-03181-4

Keywords

Navigation