Skip to main content

Phosphorus geochemical forms and potential bioavailability in surface sediments from Edku Lagoon, Egypt, regarding diagnostic ratios (Fe:P, S:Fe, and OC:OP)

Abstract

Purpose

Sediments play an important role in the nutrient dynamics of shallow lakes. In this work, the geochemical characterization of phosphorus (P) in the surface sediments of Edku Lagoon, Egypt, was studied in Spring 2019. Spatial variation, geochemical forms of P, and the factors affecting them were discussed. The concentrations of four operationally determined bioavailable P fractions that can be extracted from the sediments were examined. These fractions were water-soluble P (WSP, F1), readily desorbable P (RDP, F2), algae-available P (AAP, F3), and NaHCO3-extractable P (Olsen P, F4).

Materials and methods

Thirteen surface sediment samples were collected from Edku Lagoon, and from feeder drains. Sediment geochemical properties, total P (TP), inorganic P (IP), organic P (OP), bioavailable P fractions, and diagnostic ratios (Fe:P, S:Fe, and OC:OP) were determined. The results were discussed through various statistical analyses.

Results and discussion

The ranges and relative percentages of these P forms of the total concentration in the lagoon sediment stations examined were in the following order: AAP (16.7–35.4; 25.7 ± 6.65%) > Olsen P (9.1–13.8; 11.3 ± 1.74%) > WSP (2.7–8.2; 6.0 ± 1.96%) > RDP (0.41–1.26; 0.89 ± 0.32%). The results showed that IP was the main form of TP in the sediments; its concentration was six times that of OP. The relative IP to TP ratio ranged between 69 and 98%, whereas OP accounted for 2–31% of TP. The sediments of Edku Lagoon were characterized by relatively large amounts of bioavailable P; the sum of P fractions exceeded 40% of the TP. The severe increase in AAP indicated very abundant vegetation. The diagnostic ratios (Fe:P, S:Fe, and OC:OP) were calculated. Most stations had Fe:P < 15 (high P internal loading). However, 85% of the studied sediment samples had S:Fe < 1.5 ratios, which showed high sediment potency to isolate Fe-associated P forms. The high OC:OP ratio along the studied lagoon and drains reflected the hypertrophic conditions and foreign input sources of organic carbon.

Conclusions

The results reflected the ability of the studied P fractions to release easily from the lagoon sediments, which contributes greatly to the abundance of P from the sediments and its ease of access to surface waters, and therefore the sediments must be dredged in Edku Lagoon. The information collected will be useful in the management and development of the examined lagoon.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Availability of data and materials

The datasets used and/or analyzed during the current study are available in this published paper.

References

  1. Abd El-Hamid HT, El-Alfy MA, Elnaggar AA (2020) Prediction of future situation of land use/cover change and modeling sensitivity to pollution in Edku Lake, Egypt based on geospatial analyses. GeoJournal. https://doi.org/10.1007/s10708-020-10167-7

  2. Abdel Halim AM, Mahmoud MGO, Guerguess MS, Tadros HRZ (2013) Major constituents in Lake Edku water. Egypt Egypt J Aquat Res 39(1):13–20. https://doi.org/10.1016/j.ejar.2013.04.003

    Article  Google Scholar 

  3. Ali EM, Khairy HM (2016) Environmental assessment of drainage water impacts on water quality and eutrophication level of Lake Idku. Egypt Environ Pollut 216:437–449. https://doi.org/10.1016/j.envpol.2016.05.064

    Article  CAS  Google Scholar 

  4. Anderson LA, Sarmiento JL (1994) Redfield ratios of remineralization determined by nutrient data analysis. Global Biogeochem Cycles 8(1):65–80. https://doi.org/10.1029/93GB03318

    Article  CAS  Google Scholar 

  5. Andrieux F, Aminot A (1997) A two-year survey of phosphorus speciation in sediments of the Bay of Seine (France). Cont Shelf Res 17(10):1229–1245. https://doi.org/10.1016/S0278-4343(97)00008-3

    Article  Google Scholar 

  6. APHA (1985) Standard methods for the examination of water and wastewater. 16th ed. APHA (American Public Health Association), Washington, DC

  7. APHA-AWWA-WPCF (1999) Standard methods for the examination of water and waste water. 20th ed. APHA (American Public Health Association), Washington, DC

  8. Aspila KI, Agemian H, Chau ASY (1976) A semi-automated method for the determination of inorganic, organic and total phosphate in sediments. Analyst 101:187–197. https://doi.org/10.1039/AN9760100187

    Article  CAS  Google Scholar 

  9. Badr NBE, Hussein MMA (2010) An input/output flux model of total phosphorous in Lake Edku, a northern eutrophic Nile Delta Lake. Global J Environ Res 4(2):64–75

    CAS  Google Scholar 

  10. Barrow NJ (1999) The four laws of soil chemistry: the Leeper lecture 1998. Aust J Soil Res 37:787–829. https://doi.org/10.1071/SR98115

    Article  CAS  Google Scholar 

  11. Berg RD, Solomon EA, Teng F-Z (2019) The role of marine sediment diagenesis in the modern oceanic magnesium cycle. Nat Common 10:4371. https://doi.org/10.1038/s41467-019-12322-2

    Article  CAS  Google Scholar 

  12. Boström B, Persson G, Broberg B (1988) Bioavailability of different phosphorus forms in freshwater systems. Hydrobiologia 170:133–155. https://doi.org/10.1007/BF00024902

    Article  Google Scholar 

  13. Bricker SB, Longstaff B, Dennison W, Jones A, Boicourt K, Wicks C, Woerner J (2008) Effects of nutrient enrichment in the nation’s estuaries: a decade of change. Harmful Algae 8(1):21–32. https://doi.org/10.1016/j.hal.2008.08.028

    Article  CAS  Google Scholar 

  14. Carignan R, Kalff J (1980) Phosphorus sources for aquatic weeds, water or sediments. Science 207(4434):987–989. https://doi.org/10.1126/science.207.4434

    Article  CAS  Google Scholar 

  15. Carvalho L, Miller CA, Scott EM, Codd GA, Davies PS, Tyler AN (2011) Cyanobacterial blooms: statistical models describing risk factors for national-scale lake assessment and lake management. Sci Total Environ 409:5353–5358. https://doi.org/10.1016/j.scitotenv.2011.09.030

    Article  CAS  Google Scholar 

  16. Chen CR, Condron LM, Davis MR, Sherlock RR (2003) Seasonal changes in soil phosphorus and associated microbial properties under adjacent grassland and forest in New Zealand. For Ecol Manag 177(1–3):539–557. https://doi.org/10.1016/S0378-1127(02)00450-4

    Article  Google Scholar 

  17. Cong M, Jiang T, Qi Y-z, Dong H-p, Teng D-q, Lu S-h (2014) Phosphorus forms and distribution in Zhejiang coastal sediment in the East China Sea. Int J Sediment Res 29(2):278–284. https://doi.org/10.1016/S1001-6279(14)60043-3

    Article  Google Scholar 

  18. Dan SF, Liu S-M, Yang B (2020) Geochemical fractionation, potential bioavailability and ecological risk of phosphorus in surface sediments of the cross river estuary system and adjacent shelf, South East Nigeria (West Africa). J Mar Syst 201:103244. https://doi.org/10.1016/j.jmarsys.2019.103244

    Article  Google Scholar 

  19. de Lange GJ (1992) Distribution of exchangeable, fixed, organic and total nitrogen in interbedded turbiditic/pelagic sediments of the Madeira Abyssal Plain, eastern North Atlantic. Mar Geol 109:95–114. https://doi.org/10.1016/0025-3227(92)90223-5

    Article  Google Scholar 

  20. Dehbandi R, Moore F, Keshavarzi B, Abbasnejad A (2017) Fluoride hydrogeo chemistry and bioavailability in groundwater and soil of an endemic fluorosis belt, central Iran. Environ Earth Sci 76:177. https://doi.org/10.1007/s12665-017-6489-9

    Article  CAS  Google Scholar 

  21. Ding S, Chen M, Gong M, Fan X, Qin B, Xu H, Gao S, Jin Z, Tsang DCW, Zhang C (2018) Internal phosphorus loading from sediments causes seasonal nitrogen limitation for harmful algal blooms. Sci Total Environ 625:872–884. https://doi.org/10.1016/j.scitotenv.2017.12.348

    Article  CAS  Google Scholar 

  22. Dorich RA, Nelson DW, Sommers LE (1985) Estimating algal available phosphorus in suspended sediments by chemical extraction. J Environ Qual 14(3):400–405. https://doi.org/10.2134/jeq1985.00472425001400030018x

    Article  CAS  Google Scholar 

  23. Downs TM, Schallenberg M, Burns CW (2008) Responses of lake phytoplankton to micronutrient enrichment: a study in two New Zealand lakes and an analysis of published data. Aquat Sci 70:347–360. https://doi.org/10.1007/s00027-008-8065-6

    Article  CAS  Google Scholar 

  24. El Kafrawy SB, Ahmed MH (2020) Monitoring and protection of Egyptian northern lakes using remote sensing technology. In: Elbeih S, Negm A, Kostianoy A (eds) Environmental remote sensing in Egypt. Springer Geophysics, Springer, Cham, pp 231–284

  25. El Zokm GM, Okbah MA, Younis AM (2015) Assessment of heavy metals pollution using AVS-SEM and fractionation techniques in Edku Lagoon sediments, Mediterranean Sea. Egypt J Environ Sci Health Part A Tox Hazard Subst Environ Eng 50(6):571–584. https://doi.org/10.1080/10934529.2015.994945

    Article  CAS  Google Scholar 

  26. El-Alfy MA-H, El-Amier YA, Nofal MM (2019) Spatiotemporal changes of plant diversity and trophic level in Idku Lake, Egypt: integrating remote sensing and GIS. Asian J Biol Sci 12(4):808–819. https://scialert.net/abstract/?doi=ajbs.2019.808.819

  27. El-Sabrouti MA, El-Rayis O, Moussa A, Khalil M (1995) Sedimentary factors affecting phosphorus level in an open delta lake sediment. Egypt Fresen Environ Bull 4:655–660

    CAS  Google Scholar 

  28. El-Said GF (1999) Physic-chemical studies on the distribution of fluoride content in Lake Edku. Thesis, Chemistry Department, Faculty of Science, Alexandria University, Egypt, M.Sc, p 255

    Google Scholar 

  29. El-Said GF (2013) Bioaccumulation of key metals and other contaminants by seaweeds from the Egyptian Mediterranean Sea coast in relation to human health risk. Hum Ecol Risk Assess 19(5):1285–1305. https://doi.org/10.1080/10807039.2012.708253

    Article  CAS  Google Scholar 

  30. El-Said GF, Draz SEO, El-Sadaawy MM, Moneer AA (2014) Sedimentology, geochemistry, pollution status and ecological risk assessment of some heavy metals in surficial sediments of an Egyptian lagoon connecting to the Mediterranean Sea. J Environ Sci Health Part A Tox Hazard Subst Environ Eng 49(9):1029–1044. https://doi.org/10.1080/10934529.2014.894853

    Article  CAS  Google Scholar 

  31. El-Said GF, El-Sadaawy MM, Moneer AA, Shaltout NA (2015) The effect of fluoride on the distribution of some minerals in the surface water of an Egyptian lagoon at the Mediterranean Sea. Egypt J Aquat Res 41(1):31–39. https://doi.org/10.1016/j.ejar.2015.02.004

    Article  Google Scholar 

  32. El-Said GF, El-Sadaawy MM, Shaltout NA, Moneer AA (2021) Spatiotemporal distribution of some dissolved salts and minerals in Lake Edku connected to Mediterranean Sea: in relation to different pollutant inputs. Environ Monit Assess 193:155. https://doi.org/10.1007/s10661-021-08935-0

    Article  CAS  Google Scholar 

  33. El-Said GF, El Zokm GM, El Sayed AA, El Ashmawy AA, Shreadah MA (2020) Anomalous fluctuation of halogens in relation to the pollution status along Lake Mariout, Egypt. J Chem 8102081. https://doi.org/10.1155/2020/8102081

  34. El-Said GF, Khalil MKh, Draz SEO (2016a) Anomalous distribution of fluoride and phosphorus forms in surface sediments along eastern Egyptian Mediterranean Sea coast. Environ Sci Pollut Res 23:14240–14253. https://doi.org/10.1007/s11356-016-6552-1

    Article  CAS  Google Scholar 

  35. El-Said GF, Shaltout NA, Moneer AA, El-Sadaawy MM, Morsy AMH (2016b) The precipitation of fluoride, calcium and magnesium minerals from Egyptian Mediterranean Sea coast in relation to discharged waters. Desalination Water Treat 57:2113–2124. https://doi.org/10.1080/19443994.2014.979243

    Article  CAS  Google Scholar 

  36. Folk RL (1974) Petrography of sedimentary rocks. Hemphill Publishing Company, Austin, Texas, p 182

    Google Scholar 

  37. Fytianos K, Kotzakioti A (2005) Sequential fractionation of phosphorus in lake sediments of northern Greece. Environ Monit Assess 100:191–200. https://doi.org/10.1007/s10661-005-4770-y

    Article  CAS  Google Scholar 

  38. Geurts JJM, Smolders AJP, Verhoeven JTA, Roelofs JGM, Lamers LPM (2008) Sediment Fe:PO4 ratio as a diagnostic and prognostic tool for the restoration of macrophyte biodiversity in fen waters. Freshw Biol 53:2101–2116. https://doi.org/10.1111/j.1365-2427.2008.02038.x

    Article  CAS  Google Scholar 

  39. Horváth B, Opara-Nadi O, Beese F (2005) A simple method for measuring the carbonate content of soils. Soil Sci Soc Am J 69(4):1066–1068. https://doi.org/10.2136/sssaj2004.0010

    Article  CAS  Google Scholar 

  40. Hossen H, Negm A (2017) Sustainability of water bodies of Edku Lake, northwest of Nile Delta, Egypt: RS/GIS approach. 10th international conference interdisciplinarity in engineering, INTER ENG 2016. Procedia Eng 181:404–411. https://doi.org/10.1016/j.proeng.2017.02.408

    Article  Google Scholar 

  41. Howarth R, Chan F, Conley DJ, Garnier J, Doney SC, Marino R, Billen G (2011) Coupled biogeochemical cycles: eutrophication and hypoxia in temperate estuaries and coastal marine ecosystems. Front Ecol Environ 9(1):18–26. https://doi.org/10.1890/100008

    Article  Google Scholar 

  42. Huang S, Xu H, Liu DSJ, Tang Q, Liu R (2021) Phosphorus fractions and release factors in surface sediments of a Tailwater River in Xinmi City, a case study. Sustainability 13:5417. https://doi.org/10.3390/su13105417

    Article  CAS  Google Scholar 

  43. Hughes JM, Rakovan J (2002) The crystal structure of apatite. In: Kohn MJ, Rakovan J, Hughes JM (eds) Phosphates: geochemical, geobiological, and materials importance, 48. Reviews in Mineralogy and Geochemistry, Mineralogical Society of America, Chantilly, Virginia, pp 1–12

    Google Scholar 

  44. Jensen HS, Kristensen P, Jeppesen E, Skytthe A (1992) Iron: phosphorus ratio in surface sediment as an indicator of phosphate release from aerobic sediments in shallow lakes. Hydrobiologia 235:731–743. https://doi.org/10.1007/BF00026261

  45. Jeong J, Kim JH, Shim JH, Hwang NS, Heo CY (2019) Bioactive calcium phosphate materials and applications in bone regeneration. Biomater Res 23(4). https://doi.org/10.1186/s40824-018-0149-3

  46. Jia Y, Tan Q, Sun H, Zhang Y, Gao H, Ruan R (2019) Sulfide mineral dissolution microbes: community structure and function in industrial bioleaching heaps. Green Energy Environ 4(1):29–37. https://doi.org/10.1016/j.gee.2018.04.001

    Article  Google Scholar 

  47. Kaiserli A, Voutsa D, Samara C (2002) Phosphorus fractionation in lake sediments – Lakes Volvi and Koronia. Greece Chemosphere 46(8):1147–1455. https://doi.org/10.1016/S0045-6535(01)00242-9

    Article  CAS  Google Scholar 

  48. Khalil MKh, Draz SEO, El Zokm GM, El-Said GF (2016) Apportionment of geochemistry, texture’s properties, and risk assessment of some elements in surface sediments from Bardawil Lagoon. Egypt Hum Ecol Risk Assess 22(3):775–791. https://doi.org/10.1080/10807039.2015.1107714

    Article  CAS  Google Scholar 

  49. Khalil MKh, El Zokm GM, Fahmy MA, Said TO, Shreadah MA (2013) Geochemistry of some major and trace elements in sediments of Edku and Mariut Lakes, north Egypt. World Appl Sci J 24(3):282–294. https://doi.org/10.5829/idosi.wasj.2013.24.03.75115

    Article  CAS  Google Scholar 

  50. Kleinman PJA, Sharpley AN, Withers PJA, Bergstrom L, Johnson LT, Doody DG (2015) Implementing agricultural phosphorus science and management to combat eutrophication. Ambio 44(Suppl 2):297–310. https://doi.org/10.1007/s13280-015-0631-2

    Article  CAS  Google Scholar 

  51. Kowalczewska-Madura K, Dondajewska R, Gołdyn R, Kozak A, Messyasz B (2018) Internal phosphorus loading from the bottom sediments of a Dimictic Lake during its sustainable restoration. Water Air Soil Pollut 229:280. https://doi.org/10.1007/s11270-018-3937-4

    Article  CAS  Google Scholar 

  52. Kpodonu ATNK, Hamilton DP, Hartland A, Laughlin DC, Lusk CH (2016) Coupled use of sediment phosphorus speciation and pigment composition to infer phytoplankton phenology over 700 years in a deep oligotrophic lake. Biogeochemistry 129:181–196. https://doi.org/10.1007/s10533-016-0227-3

    Article  CAS  Google Scholar 

  53. Levine SN, Lini A, Ostrofsky ML, Burgess-Grant H, Lami A, Collyer-Gilles E, Reuter D, Schwarting-Miller L, Kamman N (2018) The relative roles of point and nonpoint phosphorus sources in the eutrophication of Lake Champlain as recorded in sediment cores. J Great Lakes Res 44(5):1043–1056. https://doi.org/10.1016/j.jglr.2018.06.005

    Article  CAS  Google Scholar 

  54. Li M, Whelan MJ, Wang GQ, White SM (2013) Phosphorus sorption and buffering mechanisms in suspended sediments from the Yangtze estuary, and Hangzhou Bay, China. Biogeosciences 10:3341–3348. https://bg.copernicus.org/articles/10/3341/2013/bg-10-3341-2013.pdf

  55. Lin C, Huang C, Ma R, Ma Y (2019) Can the watershed non-point source phosphorus flux amount be reflected by lake sediment? Ecol Indic 102:118–130. https://doi.org/10.1016/j.ecolind.2019.02.031

    Article  CAS  Google Scholar 

  56. Lin P, Guo L, Chen M, Cai Y (2013) Distribution, partitioning and mixing behavior of phosphorus species in the Jiulong River estuary. Mar Chem 157:93–105. https://doi.org/10.1016/j.marchem.2013.09.002

    Article  CAS  Google Scholar 

  57. Loganathan P, Bretherton MR, Hedley MJ (2007) Effect of soil cultivation and winter pugging on fluorine distribution in soil profiles under pasture following long-term applications of phosphate fertilizers. Aust J Soil Res 45(1):41–47. https://doi.org/10.1071/SR06094

    Article  CAS  Google Scholar 

  58. Loring DH, Rantala RTT (1992) Manual for the geochemical analyses of marine sediments and suspended particulate matter. Earth Sci Rev 32(4):235–283. https://doi.org/10.1016/0012-8252(92)90001-A

    Article  CAS  Google Scholar 

  59. Łukawska-Matuszewska K, Bolałek J (2008) Spatial distribution of phosphorus forms in sediments in the gulf of Gdansk (southern Baltic Sea). Cont Shelf Res 28(7):977–990. https://doi.org/10.1016/j.csr.2008.01.009

    Article  Google Scholar 

  60. Masoud MS, El-Sarraf WM, Harfoush AA, El-Said GF (2004) Studies on fluoride–zirconium–alizarin red S reaction. Egypt Sci Mag 1(1):27–32

    Google Scholar 

  61. Mengel K, Kirkby EA, Kosegarten H, Appel T (2001) Principles of plant nutrition, 5th edn. Springer Pvt. Ltd., New Delhi, India

    Book  Google Scholar 

  62. Mohamed AE-W, Madkour MHA, El-Saman MI (2011) Impact of anthropogenic activities and natural inputs on oceanographic characteristics of water and geochemistry of surface sediments indifferent sites along the Egyptian Red Sea Coast. Afr J Environ Sci Technol 5(7):494–511. http://www.academicjournals.org/AJEST

  63. Moneer AA, El-Sadawy MM, El-Said GF, Radwan AA (2012) Boron human health risk assessment relative to the environmental pollution of Lake Edku. Egypt JKAU: Mar Sci 23(2):41–55. https://doi.org/10.4197/Mar.23-2.3

    Article  Google Scholar 

  64. Moussa A, El-Sabrouti MA, El-Rayis O, Khalil M (1994) Phosphorus in sediments of Lake Edku, Egypt. The influence of chemical and grain size parameters. Chem Ecol 9:31–40. https://doi.org/10.1080/02757549408038560

    Article  CAS  Google Scholar 

  65. Okbah MA (2006) Bioavailability of phosphorus in Abu Qir Bay and Lake Edku sediments, Mediterranean Sea. Egypt Chem Ecol 22(6):451–462. https://doi.org/10.1080/02757540601025006

    Article  CAS  Google Scholar 

  66. Okbah MA, Abdel Halim AM, Abu El-Regal MA, Soliman NF, Nassar MEM (2018) Metals in a northern Nile Delta lake: water, suspended particulates, sediments, and biota. Environ Sci Pollut Res 25(34):33967–33977. https://doi.org/10.1007/s11356-018-3337-8

    Article  CAS  Google Scholar 

  67. Okbah MA, El-Gohary SEl (2002) Physical and chemical characteristics of Lake Edku water, Egypt. Mediterr Mar Sci 3(2):27–39. https://doi.org/10.12681/mms.246

  68. Oregioni B, Aston SR (1984) Determination of selected trace metals in marine sediments by flame/flameless atomic absorption spectrophotometer, IAEA Monaco Laboratory Internal Report, Cited from Reference Method in pollution studies No. 38, UNEP, 1986

  69. Paerl HW (2006) Assessing and managing nutrient-enhanced eutrophication in estuarine and coastal waters: interactive effects of human and climatic perturbations. Ecol Eng 26(1):40–54. https://doi.org/10.1016/j.ecoleng.2005.09.006

    Article  Google Scholar 

  70. Parfitt RL (1979) Anion adsorption by soils and soil materials. Adv Agron 30:1–50. https://doi.org/10.1016/S0065-2113(08)60702-6

    Article  Google Scholar 

  71. Paytan A, McLaughlin K (2007) The oceanic phosphorus cycles. Chem Rev 107(2):563–576. https://doi.org/10.1021/cr0503613

    Article  CAS  Google Scholar 

  72. Pu J, Ni Z, Wang Sh (2020) Characteristics of bioavailable phosphorus in sediment and potential environmental risks in Poyang Lake: the largest freshwater lake in China. Ecol Indic 115:106409. https://doi.org/10.1016/j.ecolind.2020.106409

    Article  CAS  Google Scholar 

  73. Radwan A-AM, Abdelmoneim MA, Basiony AI, El- Alfy MA (2019) Water pollution monitoring in Idku Lake (Egypt) using phytoplankton and NSF-WQI. Egypt J Aquat Biol Fish 23(4):465–481.www.ejeabf.journals.ekb.eg

  74. Reddy KR, Overcash MR, Khaleel R, Westerman PW (1980) Phosphorus adsorption desorption characteristics of two soils utilized for disposal of animal wastes. J Environ Qual 9(1):86–92. https://doi.org/10.2134/jeq1980.00472425000900010020x

    Article  CAS  Google Scholar 

  75. Rothe M, Kleeberg A, Hupfer M (2016) The occurrence, identification and environmental relevance of vivianite in waterlogged soils and aquatic sediments. Earth Sci Rev 158:51–64. https://doi.org/10.1016/j.earscirev.2016.04.008

    Article  CAS  Google Scholar 

  76. Rullkötter J (2000) Organic matter: the driving force for early diagenesis. In: Schulz HD, Zabel M (eds) Marine geochemistry. Springer Verlag, Heidelberg, pp 129–172

    Chapter  Google Scholar 

  77. Saha A, Jesna PK, Ramya VL, Sibina Mol S, Panikkar P, Vijaykumar ME, Sarkar UK, Das BK (2021) Phosphorus fractions in the sediment of a tropical reservoir, India: implications for pollution source identification and eutrophication. Environ Geochem Health. https://doi.org/10.1007/s10653-021-00985-0

    Article  Google Scholar 

  78. Shakweer L (2006) Impacts of drainage water discharge on the water chemistry of Lake Edku. Egypt J Aquat Res 32(1):264–282

    CAS  Google Scholar 

  79. Shaltout KH, Ali MM, Hassan LM, Galal TM (2005) Habitat and vegetation of Lake Edku. Egypt Taeckholmia 25(1):61–90. https://doi.org/10.21608/TAEC.2005.12304

    Article  Google Scholar 

  80. Shata MA, Okbah MA (2007) Copper and manganese forms in Lake Edku sediments, Alexandria, Egypt. Pakistan J Mar Sci 16(2):79–87. http://aquaticcommons.org/id/eprint/19077

  81. Slomp CP (2011) Phosphorus cycling in the estuarine and coastal zones: sources, sinks, and transformations. In: Treatise on estuarine and coastal science, Vol. 5, edited by: Wolanski E and McLusky DS, Academic Press, Waltham. pp 201–229

  82. Soliman NF, El Zokm GM, Okbah MA (2017) Evaluation of phosphorus bioavailability in El Mex Bay and Lake Mariut sediments. Int J Sediment Res 32(3):432–441. https://doi.org/10.1016/j.ijsrc.2017.05.006

    Article  Google Scholar 

  83. Van Moorleghem C, De Schutter N, Smolders E, Merckx R (2013) The bioavailability of colloidal and dissolved organic phosphorus to the alga Pseudokirchneriella subcapitata in relation to analytical phosphorus measurements. Hydrobiologia 709:41–53. https://doi.org/10.1007/s10750-013-1442-8

    Article  CAS  Google Scholar 

  84. Wilson TA, Amirbahman A, Norton SA, Voytek MA (2010) A record of phosphorus dynamics in oligotrophic lake sediment. J Paleolimnol 44:279–294. https://doi.org/10.1007/s10933-009-9403-y

    Article  Google Scholar 

  85. Wuenscher R, Unterfrauner H, Peticzka R, Zehetner F (2015) A comparison of 14 soil phosphorus extraction methods applied to 50 agricultural soils from Central Europe. Plant Soil Environ 61(2):86–96. https://doi.org/10.17221/932/2014-PSE

  86. Xiao-Fei W, Da-Peng L, Ming W, Ren W (2015) Bioavailability of sedimentary phosphorus under repeated sediment resuspension with the addition of algae. Environ Sci Pollut Res 22:13004–13013. https://doi.org/10.1007/s11356-015-4554-z

    Article  CAS  Google Scholar 

  87. Yu J, Ding S, Zhong J, Fan C, Chen Q, Yin H, Zhang L, Zhang Y (2017) Evaluation of simulated dredging to control internal phosphorus release from sediments: focused on phosphorus transfer and resupply across the sediment-water interface. Sci Total Environ 592:662–673. https://doi.org/10.1016/j.scitotenv.2017.02.219

    Article  CAS  Google Scholar 

  88. Zhang H, Boegman L, Scavia D, Culver DA (2016) Spatial distributions of external and internal phosphorus loads in Lake Erie and their impacts on phytoplankton and water quality. J Great Lakes Res 42(6):1212–1227. https://doi.org/10.1016/j.jglr.2016.09.005

    Article  CAS  Google Scholar 

  89. Zhang J-Z, Huang X-L (2011) Effect of temperature and salinity on phosphate sorption on marine sediments. Environ Sci Technol 45(16):6831–6837. https://doi.org/10.1021/es200867p

    Article  CAS  Google Scholar 

  90. Zhao Q, Zeng DH, Lee DK, He XY, Fan ZP, Jin YH (2007) Effects of Pinus sylvestris var. mongolica afforestation on soil phosphorus status of the Keerqin sandy lands in China. J Arid Environ 69:569–582. https://doi.org/10.1016/j.jaridenv.2006.11.004

    Article  Google Scholar 

  91. Zhou Q, Gibson CE, Zhu Y (2001) Evaluation of phosphorus bioavailability in sediments of three contrasting lakes in China and the UK. Chemosphere 42(2):221–225. https://doi.org/10.1016/S0045-6535(00)00129-6

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Contributions

Prof. Dr. Mohamed A. Okbah: conceptualization, methodology, data processing, formal analysis, writing—original draft, investigation and validation, supervision, and writing—review and editing. Dr. Gehan M. El Zokm: methodology, data processing, formal analysis, and writing—original draft, investigation and validation, supervision, and writing—review and editing. Prof. Dr. Ghada F. El-Said: methodology, data processing, formal analysis, and writing—original draft, investigation and validation, supervision, and writing—review and editing. Prof. Dr. Mona Kh. Khalil: methodology, data processing, formal analysis, and writing—original draft, investigation and validation supervision, and writing—review and editing.

Corresponding author

Correspondence to Ghada F. El-Said.

Ethics declarations

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent to publish

It is a pleasure for all the authors to publish our paper in this a valuable journal.

Competing interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible editor: Shiming Ding

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 115 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Okbah, M.A., Zokm, G.M.E., El-Said, G.F. et al. Phosphorus geochemical forms and potential bioavailability in surface sediments from Edku Lagoon, Egypt, regarding diagnostic ratios (Fe:P, S:Fe, and OC:OP). J Soils Sediments 21, 3917–3932 (2021). https://doi.org/10.1007/s11368-021-03056-0

Download citation

Keywords

  • Sediments
  • Phosphorus
  • Spatial variation
  • Biogeochemistry
  • Edku Lagoon