Skip to main content

Advertisement

Log in

Chronosequence of Technosols at the Peña Colorada mine in Colima, Mexico: a short-term remediation alternative

  • Soils, Sec 5 • Soil and Landscape Ecology • Research Article
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

The objective of this study was to examine the pedogenetic evolution occurring in technic hard materials from an iron mine through the characterization of a chronosequence of 0-, 15-, and 40-year-old Technosols and an older natural soil.

Materials and methods

Samples were taken from Technosols of different ages (0, 15, 40 years) which had developed after a layer of crushed conglomerate was placed over the top of the mine tailings, as well as from a natural soil developed on conglomerate which represented the most advanced evolutionary stage in the chronosequence. Analyses of soil micromorphological, physical, chemical, and mineralogical properties included grain size distribution; pH; electric conductivity (EC); organic matter; exchangeable bases; N-NO3; available P, Fe, Zn, Mn, Cu, and B micronutrients; and clay mineralogy (by X-ray diffraction).

Results

Results showed that 15- and 40-year-old Technosols already displayed an advanced structural development and nutrient contents comparable to those in the studied natural soil. Such a rapid pedogenesis was due to the high clay content found within the conglomerates which can be easily incorporated into the soil and reordered within the soil groundmass. The tailings were characterized by a neutral pH (6.9) and a high EC (0.188 S m−1), which decreased in the upper horizons of the 15-year-old Technosols, conforming thionic horizons. Generally, similar clay mineral assemblages dominated by smectite were observed in the conglomerate, the natural soil, and the 40-year-old Technosol.

Conclusion

This study confirms the possibility of rehabilitating iron mine tailings with a layer of conglomerate, which mitigates against the adverse effects of mining. Results showed that the conglomerate can easily evolve into a soil within a relatively short period. However, the conglomerate cover should be thick enough to avoid acidification of the topsoil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Akala V, Lal R (2000) Potential of mine land reclamation for soil organic carbon sequestration in Ohio. Land Degrad Dev 11:289–297. https://doi.org/10.1002/1099-145X(200005/06)11:3%3C289::AID-LDR385%3E3.0.CO;2-Y

    Article  Google Scholar 

  • Ahirwal J, Maiti S (2018) Development of Technosol properties and recovery of carbon stock after 16 years of revegetation on coal mine degraded lands, India. Catena 166:114–123. https://doi.org/10.1016/j.catena.2018.03.026

    Article  CAS  Google Scholar 

  • Belousova NI, Berkgaut VV, Vasenev I, Pavlova EB (1992) Podzolic soils on basic rocks. Eurasian Soil Sci 24(6):6–17

    Google Scholar 

  • Barrow NJ (2017) The effects of pH on phosphate uptake from the soil. Plant Soil 410(1–2):401–410. https://doi.org/10.1007/s11104-016-3008-9

    Article  CAS  Google Scholar 

  • Blum WEH (2005) Functions of soil for society and the environment. Rev Environ Sci Bio/Technol 4:75–79. https://doi.org/10.1007/s11157-005-2236-x

    Article  Google Scholar 

  • Brown S, Trlica A, Lavery J, Teshima M (2017) Carbon sequestration potential on mined lands. In: Bolan NS, Kirkham MB, Ok YS (Eds) Spoil to soil: mine site rehabilitation and revegetation. CRC Press pp 189–200. https://doi.org/10.1201/9781351247337

  • Camprubí A, Canet C (2009) Comment to Berthierine and chamosite hydrothermal: genetic guides in the Peña Colorada magnetite-bearing ore deposit, Mexico. Earth Planets Space 61:291–295

    Article  Google Scholar 

  • Camprubí A, Centeno-García E, Tolson G, Iriondo A, Ortega B, Bolaños D, Abdullin F, Portugal-Reyna JL, Ramos-Arias MA (2018) Geochronology of Mexican mineral deposits. VII: the Peña Colorada magmatic-hydrothermal iron oxide deposits (IOCG “clan”), Colima. Bol Soc Geol Mex 70:633‒674. https://doi.org/10.18268/BSGM2018v70n3a4

  • CONAGUA (2019) Comision Nacional del Agua, National Weather Service, https://smn.conagua.gob.mx/tools/RESOURCES/Estadistica/6039.pdf. Accessed 11 Nov 2019

  • Chernyakhovsky AG, Gradusov BP, Chizhikova NP (1976) Types of recent weathering crusts and their global distribution. Geoderma 16:235–255. https://doi.org/10.1016/0016-7061(76)90025-2

    Article  Google Scholar 

  • Corona R, Henríquez F (2004) Modelo magmático del yacimiento de Hierro Peña Colorada, Colima y su relación con la exploración de otros yacimientos de hierro en México. Bol Soc Geol Mex 113

  • Corona R, Tritlla J, Henríquez F , Morales I, Portugal JL, Nava LP (2009) Geología y mineralización del Yacimiento Peña Colorada. In: Clarck K, Salas-Pizá GA, Cubillas-Estrada R (Eds). Geología Economica de México, Servicio Geoólogico Mexicano 2a edición, pp 522–528. https://www.geologia.unam.mx:8080/igl/publs/boletin/b113.pdf

  • Coward EK, Thompson AT, Plante AF (2017) Iron-mediated mineralogical control of organic matter accumulation in tropical soil. Geoderma 306:206–216. https://doi.org/10.1016/j.geoderma.2017.07.026

    Article  CAS  Google Scholar 

  • Dane JH, Topp GC (2002) Methods of soil analysis. Part 4. Physical methods. Soil Sci. Soc. Am. Book Series No. 5. Soil Science Society of America, Inc. Madison, Wisconsin

  • Daniell A, Van-Deventer PW (2018) An overview of pedogenesis in Technosols in South Africa. South African Plant and Soil 35:281–291. https://doi.org/10.1080/02571862.2018.1470265

    Article  Google Scholar 

  • Doran JW (2002) Soil health and global sustainability: translating science into practice. Agric Ecosyst Environ 88:119–127. https://doi.org/10.1016/S0167-8809(01)00246-8

    Article  Google Scholar 

  • Frouz J, Keplin B, Pižla V, Tajovský K, Starý J, Lukešová A, Nováková A, Balı́k V, Háněl L, Materna J, Düker C, Chalupský J, Rusek J, Heinkele T, (2001) Soil biota and upper soil layer development in two contrasting post-mining chronosequences. Ecol Eng 17:275–284. https://doi.org/10.1016/S0925-8574(00)00144-0

    Article  Google Scholar 

  • Huot H, Simonnot MO, Marion P, Yvon J, De-Donato PJ, Morel L (2013) Characteristics and potential pedogenetic processes of a Technosol developing on iron industry deposit. J Soils Sediments 13:555–556. https://doi.org/10.1007/s11368-012-0513-1

    Article  CAS  Google Scholar 

  • Huot H, Simonnot M, Morel JL (2015) Pedogenic trends in soils formed in technogenic parent materials. Soil Sci 180(4/5):182–192

    Article  CAS  Google Scholar 

  • Ibarra-Arzave G, Romero-Lázaro E, Solleiro-Rebolledo E, Sedov S, Barceinas H, López-Martínez R, Chávez-Vergara B, Pi-Puig T, Calmus T (2019) Paleopedogenesis, sedimentation and holocenic geomorphologic evolution in the fluvial system of Arroyo Tinajas, Sonora. Rev Mex Cienc Geológ 36:378–392

    Article  Google Scholar 

  • IUSS Working Group WRB (2015) World Reference Base for Soil Resources 2014, update 2015 International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. FAO, Rome IT EU, p 192

  • Jongmans AG, Van Oort F, Nieuwenhuyse A, Buurman P, Jaunet AM, van Doesburg JDJ (1994) Inheritance of 2:1 phyllosilicates in Costa Rican Andisols. Soil Sci Soc Am J 58:494–501

    Article  CAS  Google Scholar 

  • Krechetov P, Chernitsova O, Sharapova A, Terskaya E (2019) Technogenic geochemical evolution of Chernozems in the sulfur coal mining areas. J Soils Sediments 19:3139–3154. https://doi.org/10.1007/s11368-018-2010-7

    Article  CAS  Google Scholar 

  • Kuter N, Dilaver Z, Gül E (2014) Determination of suitable plant species for reclamation at an abandoned coal mine area. Int J Min Reclam Environ 28(5):268–276. https://doi.org/10.1080/17480930.2014.932940

    Article  CAS  Google Scholar 

  • Lang JR, Baker T (2001) Intrusion-related gold systems: the present level of understanding. Mineral Deposita 36:477–489

    Article  CAS  Google Scholar 

  • Lindsay WL (1979) Chemical Equilibria in Soils. JohnWiley and Sons Ltd., Hoboken, NJ, USA

    Google Scholar 

  • Lomaglio T, Hattab-Hambli N, Bret A, Miard F, Trupiano D, Scippa GS, Motelica-Heino M, Bourgerie S, Morabito D (2017) Effect of biochar amendments on the mobility and (bio) availability of As, Sb and Pb in a contaminated mine technosol. J Geochem Explor 182:138–148. https://doi.org/10.1016/j.gexplo.2016.08.007

    Article  CAS  Google Scholar 

  • Loaiza JC, Stoops G, Poch RM, Casamitjana M (2015) Manual de micromorfología de suelos y técnicas complementarias. Fondo Editorial Pascual Bravo. Medellín, Colombia 384

  • Mukhopadhyay S, Maiti SK, Masto RE (2014) Development of mine soil quality index (MSQI) for evaluation of reclamation success: a chronosequence study. Ecol Eng 71:10–20

    Article  Google Scholar 

  • Nordstrom DK, Alpers CN (1999) Geochemistry of acid mine waters. In environmental geochemistry of mineral deposits. In: Plumlee GS, Logsdon MJ (Eds), Soc Econ Geol Inc V. 6A, Littleton CO: 133–160. https://doi.org/10.5382/Rev.06.06

  • Penn Ch J, Camberato JJ (2019) A critical review on soil chemical processes that control how soil pH affects phosphorus availability to plants. Agriculture 9(6):20 https://doi.org/10.3390/agriculture9060120

  • Pirajno F (2010) Hydrothermal processes and mineral systems. Springer Science+Business Media B.V., reprinted with corrections, p 1250

  • Rivera-Uria MY, Martin-Romero F, Sedov S, Ramos D, Solleiro-Rebolledo E, Diaz-Ortega, J (2019) Effects of the interaction between an acid solution and pedogenic carbonates: the case of Buenevista del Cobre Mine Mexico. Revista Mexicana de Ciencias Geologicas 36(6):308–320. https://doi.org/10.22201/cgo.20072902e.2019.3.1039

  • Rodríguez-Vila A, Forján R, Guedes RS, Covelo EF (2017) Nutrient phytoavailability in a mine soil amended with technosol and biochar and vegetated with Brassica juncea. J Soils Sediment 17:1653–1661. https://doi.org/10.1007/s11368-016-1643-7

    Article  CAS  Google Scholar 

  • Romero-Lázaro EM, Ramos-Pérez D, Romero FM, Sedov S (2019) Indicadores indirectos de contaminación residual en suelos y sedimentos de la cuenca del Río Sonora, México. Rev Int Contam Ambient 35: 371–386. https://doi.org/10.20937/rica.2019.35.02.09

  • Rzedowski J (2006) Vegetación de México. 1 ar edición digital, Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, México, p 504

  • Santomartino S, Webb JA (2007) Estimating the longevity of limestone drains in treating acid mine drainage containing high concentrations of iron. Appl Geochem 22(11):2344–2361. https://doi.org/10.1016/j.apgeochem.2007.04.020

    Article  CAS  Google Scholar 

  • Santos ES, Abreu MM, Macías F (2019) Rehabilitation of mining areas through integrated biotechnological approach: Technosols derived from organic/inorganic wastes and autochthonous plant development. Chemosphere 224:765–775. https://doi.org/10.1016/j.chemosphere.2019.02.172

    Article  CAS  Google Scholar 

  • Scalenghe R, Ferraris S (2009) The first forty years of a Technosol. Pedosphere 19:40–52. https://doi.org/10.1016/S1002-0160(08)60082-X

    Article  Google Scholar 

  • Sedov SN, Malinin OI, Shoba SA (1989) Autonomous taiga soil formation on the southwest coast of the sea of Okhotsk. Pochvovedeniye 11:24–35

    Google Scholar 

  • Sedov SN, Vaseneva EG, Shoba SA (1993) Recent and ancient weathering in soils on the basic rocks of Valamo island. Eurasian Soil Sci 25:22–37

    Google Scholar 

  • Stoops GJ (2001) Guidelines for thin section description. Laboratorium voor mineralogie, pretrologie en micropedologie. Universiteit Gent, Belgium.

  • Targulian VO, Krasilnikov PV (2007) Soil system and pedogenic processes: self-organization, time scales, and environmental significance. Catena 71:373–381. https://doi.org/10.1016/j.catena.2007.03.007

    Article  Google Scholar 

  • Toktar M, Lo Papa G, Kozybayeva FE, Dazzi C (2016) Ecological restoration in contaminated soils of Kokdzhon phosphate mining area (Zhambyl region, Kazakhstan). Ecol Eng 86:1–4. https://doi.org/10.1016/j.ecoleng.2015.09.080

    Article  Google Scholar 

  • Tritlla J, Camprubí A, Centeno E, Corona R, Iriondo A, Sánchez S, Morales P (2003) Estructura y edad del depósito de hierro de Peña Colorada, Colima: un posible equivalente fanerozoico de los depósitos de tipo IOCG. Revista Mexicana de Ciencias Geológica 20:182–201 ISSN: 1026–8774. https://www.redalyc.org/articulo.oa?id=57220303

  • Uzarowicz L (2013) Microscopic and microchemical study of iron sulphide weathering in a chronosequence of technogenic and natural soils. Geoderma Volumes 197–198:137–150. https://doi.org/10.1016/j.geoderma.2013.01.006

    Article  CAS  Google Scholar 

  • Watteau F, Huot H, Sere G, Begin C, Rees F, Schwartz C, Morel JL (2018) Micropedology to reveal pedogenic processes in Technosols. Spanish Journal of Soil Science 8:148–163. https://doi.org/10.3232/SJSS.2018.V8.N2.02

    Article  Google Scholar 

  • Walker TW, Syers JK (1976) The fate of phosphorus during pedogenesis. Geoderma 15:1–19. https://doi.org/10.1016/0016-7061(76)90066-5

    Article  CAS  Google Scholar 

  • Zhao Z, Shahrour I, Baia Z, Fan W, Feng L, Li H (2013) Soils development in opencast coal mine spoils reclaimed for 1–13 years in the West-Northern Loess Plateau of China. Eur J Soil Biol 55:40–46. https://doi.org/10.1016/j.ejsobi.2012.08.006

    Article  Google Scholar 

  • Zürcher L, Ruiz J, Barton MD (2001) Paragenesis, elemental distribution and stable isotopes at the Peña Colorada iron skarn. Colima, México: Economic Geology 96:535–557

    Google Scholar 

Download references

Acknowledgements

We are grateful to Astrid Vazquez S. (Environmental Geochemistry Laboratory at the National Laboratory of Geochemistry and Mineralogy (LANGEM) of Geology Institute, UNAM) for carrying out the geochemical analysis, and Teresa Pi Puig by X Ray diffraction analysis (LANGEM).

Author information

Authors and Affiliations

Authors

Contributions

All authors of this manuscript made substantial contributions to the manuscript and qualify for authorship, and no authors have been omitted.

Corresponding author

Correspondence to Jaime Díaz Ortega.

Ethics declarations

If any of the sections are not relevant to your manuscript, please include the heading and write “Not applicable” for that section. We declare all data are shown into the main document.

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible editor: Claudio Bini

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ortega, J.D., Sedov, S., Romero, F. et al. Chronosequence of Technosols at the Peña Colorada mine in Colima, Mexico: a short-term remediation alternative. J Soils Sediments 22, 942–956 (2022). https://doi.org/10.1007/s11368-021-02990-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-021-02990-3

Keywords

Navigation