Skip to main content
Log in

Fluxes and mechanisms of phosphorus release from sediments in seasonal hypoxic reservoirs: a simulation-based experimental study

  • Sediment Environment and Pollution Control 2020
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

Internal phosphorus (P) input has been proven to be an important cause of eutrophication. The purpose of this study is to explore the process and mechanism of P release from sediments in seasonal hypoxic reservoirs.

Material and methods

Six sediment cores were collected from Hongfeng Reservoir, one of the largest reservoirs in southwestern China. Incubation experiments were conducted using the sediment cores under aerobic and anaerobic conditions. The diffusion gradients in thin films (DGT) technique was employed to determine the concentration profiles and release characteristics of labile-P and labile-Fe at the sediment–water interface. The microbial community structure in surface sediments was determined by 16S rRNA sequencing.

Results and discussion

Compared with the aerobic condition, the P release flux was ~3.75 times under anaerobic condition, which mainly came from BD-P and NaOH-P. In addition, DGT-P and DGT-Fe were significantly positively correlated (R2 > 0.66, p < 0.001). From 16S rRNA sequencing, SRB and PSB were shown to promote P release through sulfate reduction and P dissolution in sediments. Moreover, the control measures of internal P release are discussed due to the potential risk of it in deep-water reservoirs.

Conclusion

Dissolved oxygen is the key control factor of P release; thus, anaerobic conditions promoted the release of P from sediments. Fe-P reduction and dissolution are the main processes. SRB and PSB played an important role in the P cycle of sediments. It is necessary to increase oxygen in seasonal hypoxic reservoirs to reduce the risk of internal P release.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahlgren J, Reitzel K, Brabandere HD, Goqow A, Rydin E (2011) Release of organic P forms from lake sediments. Water Res 45:565–572

    Article  CAS  Google Scholar 

  • Bai YN, Wang XN, Wu J, Lu YZ, Fu L, Zhang F, Lau TC, Zeng RJ (2019) Humic substances as electron acceptors for anaerobic oxidation of methane driven by ANME-2d. Water Res 164:114935

    Article  CAS  Google Scholar 

  • Carpenter SR (2005) Eutrophication of aquatic ecosystems: bistability and soil phosphorus. Proc Natl Acad Sci U S A 102:10002–10005

    Article  CAS  Google Scholar 

  • Chen YP, Rekha PD, Arun AB, Shen FT, Lai WA, Young CC (2006) Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Appl Soil Ecol 34:33–41

    Article  Google Scholar 

  • Chen M, Li XH, He YH, Song N, Cai HY, Wang C, Li YT, Chu HY, Krumholz LR, Jiang HL (2016) Increasing sulfate concentrations result in higher sulfide production and phosphorous mobilization in a shallow eutrophic freshwater lake. Water Res 96:94–104

    Article  CAS  Google Scholar 

  • Chen JA, Wang JF, Guo JY, Yu J, Zeng Y, Yang HQ, Zhang RX (2018) Eco-environment of reservoirs in China: characteristics and research prospects. Prog Phys Geogr 42:185–201

    Article  Google Scholar 

  • Chen MS, Ding SM, Wu YX, Fan XF, Jin ZF, Tsang DCW, Wang Y, Zhang CS (2019a) Phosphorus mobilization in lake sediments: experimental evidence of strong control by iron and negligible influences of manganese redox reactions. Environ Pollut 246:472–481

    Article  CAS  Google Scholar 

  • Chen Q, Chen JA, Wang JF, Guo JY, Jin ZX, Yu PP, Ma ZZ (2019b) In situ , high-resolution evidence of phosphorus release from sediments controlled by the reductive dissolution of iron-bound phosphorus in a deep reservoir, southwestern China. Sci Total Environ 666:39–45

    Article  CAS  Google Scholar 

  • Conley DJ, Bj̈Orck S, Bonsdorff E, Carstensen J, Destouni G, Gustafsson BG, Hietanen S, Kortekaas M, Kuosa H, Markus Meier H (2009) Hypoxia-related processes in the Baltic Sea. Environ Sci Technol 43:3412–3420

    Article  CAS  Google Scholar 

  • Cummings DE, Caccavo F, Spring S, Rosenzweig RF (1999) Ferribacterium limneticum, gen. nov., sp. nov., an Fe(III)-reducing microorganism isolated from mining-impacted freshwater lake sediments. Arch Microbiol 171:183–188

    Article  CAS  Google Scholar 

  • Ding S, Han C, Wang Y, Yao L, Wang Y, Xu D, Sun Q, Williams PN, Zhang C (2015) In situ, high-resolution imaging of labile phosphorus in sediments of a large eutrophic lake. Water Res 74:100–109

    Article  CAS  Google Scholar 

  • Dutton CL, Subalusky AL, Hamilton SK, Rosi EJ, Post DM (2018) Organic matter loading by hippopotami causes subsidy overload resulting in downstream hypoxia and fish kills. Nat Commun 9:1951

    Article  CAS  Google Scholar 

  • Einsele W (1936) Über die Beziehungen des Eisenkreislaufs zum Phosphatkreislauf im eutrophen See. Arch Hydrobiol 29:664–686

    CAS  Google Scholar 

  • El-Tarabily AK, Youssef T (2010) Enhancement of morphological, anatomical and physiological characteristics of seedlings of the mangrove Avicennia marina inoculated with a native phosphate-solubilizing isolate of Oceanobacillus picturae under greenhouse conditions. Plant Soil 332:147–162

    Article  CAS  Google Scholar 

  • Fisher MM, Reddy KR (2001) Phosphorus flux from wetland soils affected by long-term nutrient loading. J Environ Qual 30:261–271

    Article  CAS  Google Scholar 

  • Frankowski L, Bolaek J, Szostek A (2002) Phosphorus in bottom sediments of Pomeranian Bay (Southern Baltic—Poland). Estuar Coast Shelf S 54:1027–1038

    Article  CAS  Google Scholar 

  • Gao Y, Liang T, Tian S, Wang L, Holm PE, Hansen HCB (2016) High-resolution imaging of labile phosphorus and its relationship with iron redox state in lake sediments. Environ Pollut 219:466–474

    Article  CAS  Google Scholar 

  • Gibbons KJ, Bridgeman TB (2020) Effect of temperature on phosphorus flux from anoxic western Lake Erie sediments. Water Res 182:116022

    Article  CAS  Google Scholar 

  • Grangeasse C, Doublet P, Vincent C, Vaganay E, Riberty M, Duclos B, Cozzone AJ (1998) Functional characterization of the low-molecular-mass phosphotyrosine-protein phosphatase of Acinetobacter johnsonii. J Mol Biol 278:339–347

    Article  CAS  Google Scholar 

  • Gu J, Zhang W, Li Y, Niu L, Zhang H (2020) Source identification of phosphorus in the river-lake interconnected system using microbial community fingerprints. Environ Res 186:109498

    Article  CAS  Google Scholar 

  • Guo W, Zhao Y, Li Y, Guo J (2020) Trophic level and its historical evolution in Lake Hongfeng, Southwest China (In Chinese). Chinese J Ecol 39:3371–3378

    Google Scholar 

  • Henry (1999) Heat budgets, thermal structure and dissolved oxygen in Brazilian reservoirs, Theoretical reservoir ecology and its Applications. International Institute of Ecology, São Paulo, pp 125–151

    Google Scholar 

  • Hupfer M, Gächter R, Giovanoli R (1995) Transformation of phosphorus species in settling seston and during early sediment diagenesis. Aquat Sci 57:305–324

    Article  Google Scholar 

  • Ingall ED, Jahnke RA (1997) Influence of water-column anoxia on the elemental fractionation of carbon and phosphorus during sediment diagenesis. Mar Geol 139:219–229

    Article  CAS  Google Scholar 

  • Jin X, Wang S, Pang Y, Wu FC (2006) Phosphorus fractions and the effect of pH on the phosphorus release of the sediments from different trophic areas in Taihu Lake, China. Environ Pollut 139:288–295

    Article  CAS  Google Scholar 

  • Kang M, Peng S, Tian Y, Zhang H (2018) Effects of dissolved oxygen and nutrient loading on phosphorus fluxes at the sediment–water interface in the Hai River Estuary. China Mar Pollut Bull 130:132–139

    Article  CAS  Google Scholar 

  • Kannapiran E, Ramkumar VS (2011) Isolation of phosphate solubilizing bacteria from the sediments of Thondi coast, Palk Strait, Southeast coast of India. Annals of Biological Research 2:157–163

    CAS  Google Scholar 

  • Kim YH, Bae B, Choung YK (2005) Optimization of biological phosphorus removal from contaminated sediments with phosphate-solubilizing microorganisms. J Biosci Bioeng 99:23–29

    Article  CAS  Google Scholar 

  • Kwak DH, Jeon YT, Hur YD (2018) Phosphorus fractionation and release characteristics of sediment in the Saemangeum Reservoir for seasonal change. Int J Sediment Res 3:250–261

    Article  Google Scholar 

  • Lee KS, Song SB, Kim KE, Kim YH, Kim SK, Kho BH, Ko DK, Choi YK, Lee YK, Kim CK (2000) Cloning and characterization of the UDP-sugar hydrolase gene (ushA) of Enterobacter aerogenes IFO 12010. Biochem Bioph Res Co 269:526–531

    Article  CAS  Google Scholar 

  • Lehner B, Liermann CR, Revenga C, Vörösmarty C, Fekete B, Crouzet P, Döll P, Endejan M, Frenken K, Magome J (2011) High-resolution mapping of the world's reservoirs and dams for sustainable river-flow management. Front Ecol Environ 9:494–502

    Article  Google Scholar 

  • Li Y, Zhang J, Zhang J, Xu W, Mou Z (2019) Characteristics of inorganic phosphate-solubilizing bacteria from the sediments of a eutrophic lake. Int J Env Res Pub He 16:2141

    Article  CAS  Google Scholar 

  • Li Y, Kuang S, Wang Z, Shen Q, Kang D (2020a) Characteristics and significance of nitrogen, phosphorus and oxygen transportation at the sediment-water interface in east Lake Chaohu (In Chinese). J Lake Sci 32:688–700

    Article  Google Scholar 

  • Li Y, Wang L, Yan Z, Chao C, Liu C (2020b) Effectiveness of dredging on internal phosphorus loading in a typical aquacultural lake. Sci Total Environ 744:140883

    Article  CAS  Google Scholar 

  • Li H, Song C, Yang L, Qin H, Cao X, Zhou Y (2021) Phosphorus supply pathways and mechanisms in shallow lakes with different regime. Water Res 193:116886

    Article  CAS  Google Scholar 

  • Lin TF, Huang HI, Shen FT, Young CC (2006) The protons of gluconic acid are the major factor responsible for the dissolution of tricalcium phosphate by Burkholderia cepacia CC-Al74[J]. Bioresour Technol 97(7):957–960

    Article  CAS  Google Scholar 

  • Liu YQ, Cao X, Li H, Zhou Z, Wang S, Wang Z, Song C, Zhou Y (2017) Distribution of phosphorus-solubilizing bacteria in relation to fractionation and sorption behaviors of phosphorus in sediment of the Three Gorges Reservoir. Environ Sci Pol 24:17679–17687

    Article  CAS  Google Scholar 

  • Liu Z, Zhang Y, Yan P, Luo J, Wu Z (2020) Synergistic control of internal phosphorus loading from eutrophic lake sediment using MMF coupled with submerged macrophytes. Sci Total Environ 731:138697

    Article  CAS  Google Scholar 

  • Lovley D, Fraga J, Blunt-Harris E, Hayes L, Phillips E, Coates J (1998) Humic substances as a mediator for microbially catalyzed metal reduction. Acta Hydrochim Hydrobiol 26:152–157

    Article  CAS  Google Scholar 

  • Ma WW, Zhu MX, Yang GP, Li T (2017) In situ, high-resolution DGT measurements of dissolved sulfide, iron and phosphorus in sediments of the East China Sea: insights into phosphorus mobilization and microbial iron reduction. Mar Pollut Bull 124:400–410

    Article  CAS  Google Scholar 

  • Maavara T, Lauerwald R, Regnier P, Van Cappellen P (2017) Global perturbation of organic carbon cycling by river damming. Nat Commun 8:15347

    Article  CAS  Google Scholar 

  • Maitra N, Manna SK, Samanta S, Sarkar K, Debnath D, Bandopadhyay C, Sahu SK, Sharma AP (2015) Ecological significance and phosphorus release potential of phosphate solubilizing bacteria in freshwater ecosystems. Hydrobiologia 745:69–83

    Article  CAS  Google Scholar 

  • Markovic S, Liang A, Watson SB, Guo J, Mugalingam S, Arhonditsis G, Morley A, Dittrich M (2019) Biogeochemical mechanisms controlling phosphorus diagenesis and internal loading in a remediated hard water eutrophic embayment. Chem Geol 514:122–137

    Article  CAS  Google Scholar 

  • Mcginnis DF, Lorke A, Wuest A, Stoeckli A, Little JC (2004) Interaction between a bubble plume and the near field in a stratified lake. Water Resour Res 40:187–203

    Article  Google Scholar 

  • Midwood AJ, Boutton TW (1998) Soil carbonate decomposition by acid has little effect on δ13C of organic matter. Soil Biol Biochem 30:1301–1307

    Article  CAS  Google Scholar 

  • Murphy J, Riley JP (1962) A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta 27:678–681

    Article  Google Scholar 

  • Mwr (2013) Bulletin of first national census for water. China WaterPower Press

  • Nilsson C, Reidy CA, Dynesius M, Revenga C (2005) Fragmentation and flow regulation of the world’s large river systems. Science 308:405–408

    Article  CAS  Google Scholar 

  • Nóbrega GN, Otero XL, Macías F, Ferreira TO (2014) Phosphorus geochemistry in a Brazilian semiarid mangrove soil affected by shrimp farm effluents. Environ Monit Assess 186:5749–5762

    Article  CAS  Google Scholar 

  • Och LM, Müller B, Voegelin A, Ulrich A, Göttlicher J, Steiniger R (2012) New insights into the formation and burial of Fe/Mn accumulations in Lake Baikal sediments. Chem Geol:330–331

  • Oldenborg KA, Steinman AD (2019) Impact of sediment dredging on sediment phosphorus flux in a restored riparian wetland. Sci Total Environ 650:1969–1979

    Article  CAS  Google Scholar 

  • Panda B, Rahman H, Panda J (2016) Phosphate solubilizing bacteria from the acidic soils of Eastern Himalayan region and their antagonistic effect on fungal pathogens. Rhizosphere 2:62–71

    Article  Google Scholar 

  • Paul D, Sinha NS (2013) Bacteria showing phosphate solubilizing efficiency in river sediment. Electron J Biosciences 1:1–5

    Google Scholar 

  • Paytan A, Roberts K, Watson S, Peek S, Chuang P-C, Defforey D, Kendall C (2017) Internal loading of phosphate in Lake Erie Central Basin. Sci Total Environ 579:1356–1365

    Article  CAS  Google Scholar 

  • Pomeroy LR, Smith EE, Grant CM (1965) The exchange of phosphate between estuarine water and sediments. Limnol Oceanogr 10:167–172

    Article  Google Scholar 

  • Qian Y, Shi J, Chen Y, Lou L, Cui X, Cao R, Li P, Tang J (2010) Characterization of phosphate solubilizing bacteria in sediments from a shallow eutrophic lake and a wetland: isolation, molecular identification and phosphorus release ability determination. Molecules 15:8518–8533

    Article  CAS  Google Scholar 

  • Qu JH, Li HF, Chen N, Yuan HL (2013) Biogeochemical function of phosphorus-solubilising bacteria on cycling of phosphorus at the water-sediment interface under laboratorial simulated conditions. Int J Environ Pollut 52:104–116

    Article  CAS  Google Scholar 

  • Roden EE, Zachara JM (1996) Microbial reduction of crystalline iron(III) oxides: influence of oxide surface area and potential for cell growth. Environ Sci Technol 30:1618–1628

    Article  CAS  Google Scholar 

  • Ruttenberg KC (2019) Phosphorus cycle ☆. Encyclopedia of Ocean Sciences (Third Edition) 1:447–460

    Article  Google Scholar 

  • Rydin E (2000) Potentially mobile phosphorus in Lake Erken sediment. Water Res 34:2037–2042

    Article  CAS  Google Scholar 

  • Schindler DW, Carpenter SR, Chapra SC, Hecky RE, Orihel DM (2016) Reducing phosphorus to curb lake eutrophication is a success. Environ Sci Technol 50:8923–8929

    Article  CAS  Google Scholar 

  • Serra T, Vidal J, Casamitjana X, Soler M, Colomer J (2007) The role of surface vertical mixing in phytoplankton distribution in a stratified reservoir. Limnol Oceanogr 52:620–634

    Article  Google Scholar 

  • Shi WQ, Pan G, Chen QW, Song LR, Zhu L (2018) Hypoxia remediation and methane emission manipulation using surface oxygen nanobubbles. Environ Sci Technol 25:8712–8717

    Article  CAS  Google Scholar 

  • Sinkko H, Lukkari K, Sihvonen LM, Sivonen K, Leivuori M, Rantanen M, Paulin L, Lyra C (2013) Bacteria contribute to sediment nutrient release and reflect progressed eutrophication-driven hypoxia in an organic-rich continental sea. PLoS One 8:e67061–e67061

    Article  CAS  Google Scholar 

  • Smith L, Watzin MC, Druschel G (2011) Relating sediment phosphorus mobility to seasonal and diel redox fluctuations at the sediment-water interface in a eutrophic freshwater lake. Limnol Oceanogr 56:2251–2264

    Article  CAS  Google Scholar 

  • Speece RE (1971) Hypolimnion aeration. Journal 63:6–9

    Google Scholar 

  • Su M, Han FY, Wu YL, Yan ZP, Lv ZS, Tian D, Wang SM, Hu SJ, Shen ZT, Li Z (2019) Effects of phosphate-solubilizing bacteria on phosphorous release and sorption on montmorillonite. Appl Clay Sci 181:105227

    Article  CAS  Google Scholar 

  • Sun QQ, Chen JA, Wang JF, Yang HQ (2017) High-resolution distribution characteristics of phosphorous, iron and sulfur across the sediment-water interface of Aha Reservoir (In Chinese). Environ Sci 38:2810–2818

    Google Scholar 

  • Tammeorg O, Nürnberg G, Horppila J, Haldna M, Niemistö J (2020) Redox-related release of phosphorus from sediments in large and shallow Lake Peipsi: evidence from sediment studies and long-term monitoring data. J Great Lakes Res 46:1595–1603

    Article  CAS  Google Scholar 

  • Tamura H, Goto K, Yotsuyanagi T, Nagayama M (1974) Spectrophotometric determination of iron(II) with 1,10-phenanthroline in the presence of large amounts of iron(III). Talanta 21:314–318

    Article  CAS  Google Scholar 

  • Tang W, Zhang H, Zhang W, Wang C, Shan B (2013) Biological invasions induced phosphorus release from sediments in freshwater ecosystems. Colloid Surface A 436:873–880

    Article  CAS  Google Scholar 

  • Venkateswaran K, Natarajan R (1983) Seasonal distribution of inorganic phosphate solubilising bacteria and phosphatase producing bacteria in Porto Novo waters. Indian J Geo-Mar Sci 12:213–217

    Google Scholar 

  • Voordeckers JW, Kim BC, Izallalen M, Lovley DR (2010) Role of Geobacter sulfurreducens outer surface c-type cytochromes in reduction of soil humic acid and anthraquinone-2,6-disulfonate. Appl Environ Microbiol 76:2371–2375

    Article  CAS  Google Scholar 

  • Wang S, Jin X, Bu Q, Jiao L, Wu F (2008) Effects of dissolved oxygen supply level on phosphorus release from lake sediments. Colloids Surf A Physicochem Eng Asp 316:245–252

    Article  CAS  Google Scholar 

  • Wang JF, Chen JA, Dallimore C, Yang HQ, Dai ZH (2015) Spatial distribution, fractions, and potential release of sediment phosphorus in the Hongfeng Reservoir, southwest China. Lake Reserv Manage 31:214–224

    Article  CAS  Google Scholar 

  • Wang JF, Chen JA, Ding SM, Guo JY, Christopher D (2016) Effects of seasonal hypoxia on the release of phosphorus from sediments in deep-water ecosystem: a case study in Hongfeng Reservoir, Southwest China. Environ Pollut 219:858–865

    Article  CAS  Google Scholar 

  • Wang Y, Li K, Liang R, Han S, Li Y (2019) Distribution and release characteristics of phosphorus in a reservoir in southwest China. Int J Env Res Pub He 16

  • Wu GF, Zhou XP (2005) Characterization of phosphorus-releasing bacteria in a small eutrophic shallow lake, Eastern China. Water Res 39:4623–4632

    Article  CAS  Google Scholar 

  • Wu Q, Zhang R, Huang S, Zhang H (2008) Effects of bacteria on nitrogen and phosphorus release from river sediment. J Environ Sci 20:404–412

    Article  CAS  Google Scholar 

  • Wu Y, Wen Y, Zhou J, Wu Y (2014) Phosphorus release from lake sediments: effects of pH, temperature and dissolved oxygen. KSCE J Civ Eng 18:323–329

    Article  Google Scholar 

  • Wu S, Zhao Y, Chen Y, Dong X, Wang M, Wang G (2018) Sulfur cycling in freshwater sediments: a cryptic driving force of iron deposition and phosphorus mobilization. Sci Total Environ 657:1294–1303

    Article  CAS  Google Scholar 

  • Wu S, Zhao Y, Chen Y, Dong X, Wang M, Wang G (2019) Sulfur cycling in freshwater sediments: a cryptic driving force of iron deposition and phosphorus mobilization. Sci Total Environ 657:1294–1303

    Article  CAS  Google Scholar 

  • Xu D, Chen YF, Ding SM, Sun Q, Wang Y, Zhang CS (2013) Diffusive gradients in thin films technique equipped with a mixed binding gel for simultaneous measurements of dissolved reactive phosphorus and dissolved iron. Environ Sci Technol 47:10477–10484

    CAS  Google Scholar 

  • Yang X, Lu X (2014) Drastic change in China’s lakes and reservoirs over the past decades. Sci Rep 4:6041

    Article  CAS  Google Scholar 

  • Yang CH, Yang P, Geng J, Yin HB, Chen KN (2020) Sediment internal nutrient loading in the most polluted area of a shallow eutrophic lake (Lake Chaohu, China) and its contribution to lake eutrophication. Environ Pollut 262:114292

    Article  CAS  Google Scholar 

  • Yin H, Yang P, Kong M, Li W (2020) Preparation of the lanthanum–aluminum-amended attapulgite composite as a novel inactivation material to immobilize phosphorus in lake sediment. Environ Sci Technol 54:11602–11610

    Article  CAS  Google Scholar 

  • Yu J, Ding S, Zhong J, Fan C, Chen Q, Yin H, Zhang L, Zhang Y (2017) Evaluation of simulated dredging to control internal phosphorus release from sediments: focused on phosphorus transfer and resupply across the sediment-water interface. Sci Total Environ 592:662–673

    Article  CAS  Google Scholar 

  • Zhang HG, Lyu T, Bi L, Hamilton GT, Pan G (2018) Combating hypoxia/anoxia at sediment-water interfaces: a preliminary study of oxygen nanobubble modified clay materials. Sci Total Environ 637–638:550–560

    Article  CAS  Google Scholar 

  • Zhao Y, Yang Z, Xia X, Wang F (2012) A shallow lake remediation regime with Phragmites australis: incorporating nutrient removal and water evapotranspiration. Water Res 46:5635–5644

    Article  CAS  Google Scholar 

Download references

Funding

This study was sponsored jointly by the Strategic Priority Research Program of CAS (No. XDB40020400), the Chinese NSF Joint Fund Project (No. U1612441), the Chinese NSF project (No. 41773145, 41977296), the Guizhou Science and Technology Project of China (No. [2019]2-9), the Youth Innovation Promotion Association CAS (No. 2019389), and the CAS Interdisciplinary Innovation Team.

Author information

Authors and Affiliations

Authors

Contributions

Xiaohong Yang: conceptualization, methodology, investigation, writing—original draft, writing—review and editing. Ruixue Zhang: investigation, writing—review and editing. Jingfu Wang: conceptualization, methodology, resources, writing—review and editing, funding acquisition. Kangkang He: investigation, formal analysis. Jingan Chen: investigation, writing—review and editing.

Corresponding author

Correspondence to Jingfu Wang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible editor: Haihan Zhang

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 544 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Zhang, R., Wang, J. et al. Fluxes and mechanisms of phosphorus release from sediments in seasonal hypoxic reservoirs: a simulation-based experimental study. J Soils Sediments 21, 3246–3258 (2021). https://doi.org/10.1007/s11368-021-02946-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-021-02946-7

Keywords

Navigation