Effects of long-term nitrogen fertilization on N2O, N2 and their yield-scaled emissions in a temperate semi-arid agro-ecosystem

Abstract

Purpose

Nitrous oxide (N2O) measured simultaneously with di-nitrogen (N2) emissions from soils are greatly uncertain due to large temporal and spatial variations. This study aims to report N2O, N2, N2/N2O, 15N-N2O, wheat-maize annual grain yields, and yield-scaled N2O and N2O plus N2 emissions on the responses to different nitrogen (N) fertilizer rates in a winter wheat-summer maize cropping system. Furthermore, this study also seeks to determine controlling factors for N2O, N2, and N2/N2O emissions and significantly investigate the relationship between the soil-climate measured factors and 15N-N2O.

Materials and method

Three N inputs and control treatments, 0, CK; 200, LN; 400, MN; and 600, HN kg N ha−1 year−1 were set since 1998. Direct measurement method has been used to quantify N2O and N2 emissions.

Results

Our results indicated that the effects of long-term N fertilization significantly increased N2O and N2 and also reduced N2/N2O emission ratios as described by exponential functions. Using structural equation modeling (SEM), NH4+, WFPS, NO3-, and DOC were revealed to be main controlling factors for N2O, while N2 by DOC, NO3-, WFPS, and temperature finally N2/N2O was positively related to temperature. Furthermore, the 15N-N2O was positively related to N2/N2O ratios, indicating that denitrification is the dominant process at the study site. The yield-scaled N2O emissions followed the order HM>MN>LN>CK, and they were 1.56, 1.47, and 1.07 times greater than CK, respectively. Total yield-scaled N2O plus N2 were in the order of CK>HN>MN>LN.

Conclusion

N fertilization has shown strong impact not only on N2O, N2, and N2/N2O emissions but also on yield-scaled N2O and N2O plus N2 emissions. High agronomic nitrogen use efficiency (NUE), low yield-scaled N2O emissions, and low cumulative N2O plus N2 emissions were observed at 200-LN treatment, suggesting this rate to be an optimum and sustainable agricultural management practice with no significant crop yield reduction as compared to the current farmers’ practice of 400 kg N ha−1 year−1.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Adviento-Borbe MAA, Haddix ML, Binder DL, Walters DT, Dobermann A (2007) Soil greenhouse gas fluxes and global warming potential in four high - yielding maize systems. Global Change Biol 13(9):1972–1988. https://doi.org/10.1111/j.1365-2486.2007.01421.x

    Article  Google Scholar 

  2. Mosier AR, Halvorson AD, Reule CA, Liu XJ (2006) Net global warming potential and greenhouse gas intensity in irrigated cropping systems in northeastern colorado. Journal of Environmental Quality 35(4):1584–1598

  3. Baggs EM (2008) A review of stable isotope techniques for N2O source partitioning in soils: recent progress, remaining challenges and future considerations. Rapid Commun Mass Sp 22(11):1664–1672. https://doi.org/10.1002/rcm.3456

    CAS  Article  Google Scholar 

  4. Baily A, Watson CJ, Laughlin R, Matthews D, McGeough K, Jordan P (2012) Use of the 15N gas flux method to measure the source and level of N2O and N2 emissions from grazed grassland. Nutr Cycl Agroecosys 94(2-3):287–298. https://doi.org/10.1007/s10705-012-9541-x

    CAS  Article  Google Scholar 

  5. Butterbach-Bahl K, Baggs EM, Dannenmann M, Kiese R, Zechmeister-Boltenstern S (2013) Nitrous oxide emissions from soils: how well do we understand the processes and their controls? Philos T Roy Soc B 368(1621):20130122. https://doi.org/10.1098/rstb.2013.0122

    CAS  Article  Google Scholar 

  6. Butterbach-Bahl K, Willibald G, Papen H (2002) Soil core method for direct simultaneous determination of N2 and N2O emissions from forest soils. Plant Soil 240(1):105–116. https://doi.org/10.1023/A:1015870518723

    CAS  Article  Google Scholar 

  7. Cai Z, Laughlin RJ, Stevens RJ (2001) Nitrous oxide and dinitrogen emissions from soil under different water regimes and straw amendment. Chemosphere 42(2):113–121. https://doi.org/10.1016/S0045-6535(00)00116-8

    CAS  Article  Google Scholar 

  8. Chen T, Oenema O, Li J, Misselbrook T, Dong W, Qin S, Hu C (2019) Seasonal variations in N2 and N2O emissions from a wheat–maize cropping system. Biol Fert Soil 1-13:539–551. https://doi.org/10.1007/s00374-019-01373-8

    Article  Google Scholar 

  9. Cui Z, Wang G, Yue S, Wu L, Zhang W, Zhang F, Chen X (2014) Closing the N-use efficiency gap to achieve food and environmental security. Environ Sci Technol 48(10):5780–5787. https://doi.org/10.1021/es5007127

    CAS  Article  Google Scholar 

  10. Dannenmann M, Butterbach-Bahl K, Gasche R, Willibald G, Papen H (2008) Dinitrogen emissions and the N2:N2O emission ratio of a Rendzic Leptosol as influenced by pH and forest thinning. Soil Biol Biochem 40(9):2317–2323. https://doi.org/10.1016/j.soilbio.2008.05.009

    CAS  Article  Google Scholar 

  11. de Vries W, Leip A, Reinds GJ, Kros J, Lesschen JP, Bouwman AF (2011) Comparison of land nitrogen budgets for European agriculture by various modeling approaches. Environ Pollut 159(11):3254–3268. https://doi.org/10.1016/j.envpol.2011.03.038

    CAS  Article  Google Scholar 

  12. Erisman JW, Sutton MA, Galloway J, Klimont Z, Winiwarter W (2008) How a century of ammonia synthesis changed the world. Nat Geosci 1(10):636–639. https://doi.org/10.1038/ngeo325

    CAS  Article  Google Scholar 

  13. Fan C, Chen H, Li B, Xiong Z (2017) Biochar reduces yield-scaled emissions of reactive nitrogen gases from vegetable soils across China. Biogeosciences. 14(11):2851–2863. https://doi.org/10.5194/bg-14-2851-2017

    CAS  Article  Google Scholar 

  14. Forster, P., Ramaswamy, V., Artaxo, P., Berntsen, T., Betts, R., Fahey, D. W. and Nganga, J. (2007). Changes in atmospheric constituents and in radiative forcing. Chapter2. In Climate Change 2007. The Physical Science Basis.

  15. Franzluebbers AJ (1999) Microbial activity in response to water-filled pore space of variably eroded southern Piedmont soils. Appl Soil Ecol 11(1):91–101. https://doi.org/10.1016/S0929-1393(98)00128-0

    Article  Google Scholar 

  16. Friedl J, Cardenas LM, Clough TJ, Dannenmann M, Hu C, Scheer C (2020) Measuring denitrification and the N2O/(N2O+ N2) emission ratio from terrestrial soils. Curr Opin Env Sust 47:61–71. https://doi.org/10.1016/j.cosust.2020.08.006

    Article  Google Scholar 

  17. Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai Z, Freney JR, Sutton MA (2008) Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320(5878):889–892. https://doi.org/10.1126/science.1136674

    CAS  Article  Google Scholar 

  18. Grafton RQ, Williams J, Jiang Q (2015) Food and water gaps to 2050: preliminary results from the global food and water system (GFWS) platform. Food Secur 7(2):209–220. https://doi.org/10.1007/s12571-015-0439-8

    Article  Google Scholar 

  19. Groffman PM (2012) Terrestrial denitrification: challenges and opportunities. Ecological Processes 1(1):1–11. https://doi.org/10.1186/2192-1709-1-11

    Article  Google Scholar 

  20. Groffman PM, Altabet MA, Böhlke JK, Butterbach-Bahl K, David MB, Firestone MK, Voytek MA (2006) Methods for measuring denitrification: diverse approaches to a difficult problem. Ecol Appl 16(6):2091–2122. https://doi.org/10.1890/1051-0761(2006)016[2091:MFMDDA]2.0.CO;2

    Article  Google Scholar 

  21. Guo L, Wang X, Diao T, Ju X, Niu X, Zheng L, Han X (2018) N2O emission contributions by different pathways and associated microbial community dynamics in a typical calcareous vegetable soil. Environ Pollut 242:2005–2013. https://doi.org/10.1016/j.envpol.2018.07.028

    CAS  Article  Google Scholar 

  22. Hauck RD, Melsted SW (1956) Some aspects of the problem of evaluating denitrification in soils. Soil Sci Soc Am J 20(3):361–364. https://doi.org/10.2136/sssaj1956.03615995002000030017x

    CAS  Article  Google Scholar 

  23. Hu XK, Su F, Ju XT, Gao B, Oenema O, Christie P, Zhang FS (2013) Greenhouse gas emissions from a wheat–maize double cropping system with different nitrogen fertilization regimes. Environ. Pollut 176:198–207. https://doi.org/10.1016/j.envpol.2013.01.040

    CAS  Article  Google Scholar 

  24. Huang T, Yang H, Huang C, Ju X (2017) Effect of fertilizer N rates and straw management on yield-scaled nitrous oxide emissions in a maize-wheat double cropping system. Field Crops Research 204:1–11. https://doi.org/10.1016/j.fcr.2017.01.004

    Article  Google Scholar 

  25. IPCC. 2007. Climate Change 2007: The Physical Science Basis. Working group I contribution to the fourth assessment report of the Intergovernmental Panel on Climate Change (Vol. 4). Cambridge university press.

  26. IPCC. 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, 662 USA.

  27. Ju XT, Xing GX, Chen XP, Zhang SL, Zhang LJ, Liu XJ, Zhang FS (2009) Reducing environmental risk by improving N management in intensive Chinese agricultural systems. P Natl Acad Sci 106(9):3041–3046. https://doi.org/10.1073/pnas.0813417106

    Article  Google Scholar 

  28. Kim DG, Hernandez-Ramirez G, Giltrap D (2013) Linear and nonlinear dependency of direct nitrous oxide emissions on fertilizer nitrogen input: a meta-analysis. Agr Ecosyst Environ 168:53–65. https://doi.org/10.1016/j.agee.2012.02.021

    CAS  Article  Google Scholar 

  29. Kline RB (2011) Convergence of structural equation modeling and multilevel modeling. SEGA publication. https://doi.org/10.4135/9781446268261.n31

  30. Lassaletta L, Billen G, Grizzetti B, Anglade J, Garnier J (2014) 50 year trends in nitrogen use efficiency of world cropping systems: the relationship between yield and nitrogen input to cropland. Environ Res Lett 9(10):105011. https://doi.org/10.1088/1748-9326/9/10/105011

    Article  Google Scholar 

  31. Li Z, Xia S, Zhang R, Zhang R, Chen F, Liu Y (2020) N2O emissions and product ratios of nitrification and denitrification are altered by K fertilizer in acidic agricultural soils. Environ Pollut 115065:115065. https://doi.org/10.1016/j.envpol.2020.115065

    CAS  Article  Google Scholar 

  32. Liu C, Wang K, Zheng X (2012) Responses of N2O and CH4 fluxes to fertilizer nitrogen addition rates in an irrigated wheat-maize cropping system in northern China. Biogeosciences 9(2):839–850. https://doi.org/10.5194/bg-9-839-2012

    CAS  Article  Google Scholar 

  33. Mathieu O, Hénault C, Lévêque J, Baujard E, Milloux MJ, Andreux F (2006) Quantifying the contribution of nitrification and denitrification to the nitrous oxide flux using 15 N tracers. Environ Pollut 144(3):933–940. https://doi.org/10.1016/j.envpol.2006.02.005

    CAS  Article  Google Scholar 

  34. Meng Q, Sun Q, Chen X, Cui Z, Yue S, Zhang F, Römheld V (2012) Alternative cropping systems for sustainable water and nitrogen use in the North China Plain. Agr Ecosyst Environ 146(1):93–102. https://doi.org/10.1016/j.agee.2011.10.015

    Article  Google Scholar 

  35. Miller MN, Zebarth B, Dandie CE, Burton DL, Goyer C, Trevors JT (2008) Crop residue influence on denitrification, N2O emissions and denitrifier community abundance in soil. Soil Biol Biochem 40(10):2553–2562. https://doi.org/10.1016/j.soilbio.2008.06.024

    CAS  Article  Google Scholar 

  36. Mueller L, Shepherd G, Schindler U, Ball BC, Munkholm LJ, Hennings V, Hu C (2013) Evaluation of soil structure in the framework of an overall soil quality rating. Soil Till Res 127:74–84. https://doi.org/10.1016/j.still.2012.03.002

    Article  Google Scholar 

  37. Mulvaney RL, Khan SA, Stevens WB, Mulvaney CS (1997) Improved diffusion methods for determination of inorganic nitrogen in soil extracts and water. Biol Fert Soil 24(4):413–420. https://doi.org/10.1007/s003740050266

    CAS  Article  Google Scholar 

  38. NoAA, ESLR. https://www.esrl.noaa.gov/gmd/hats/insitu/cats/conc.php?site=brw&gas=n2o Accessed on 01 June 2019.

  39. Pan YP, Wang YS, Tang GQ, Wu D (2012) Wet and dry deposition of atmospheric nitrogen at ten sites in Northern China. Atmos Chem Phys 12(14):6515–6535. https://doi.org/10.5194/acp-12-6515-2012

    CAS  Article  Google Scholar 

  40. Park S, Pérez T, Boering KA, Trumbore SE, Gil J, Marquina S, Tyler SC (2011) Can N2O stable isotopes and isotopomers be useful tools to characterize sources and microbial pathways of N2O production and consumption in tropical soils? Global Biogeochem. Cy. 25(1). https://doi.org/10.1029/2009GB003615

  41. Pérez T, Trumbore SE, Tyler SC, Matson PA, Ortiz-Monasterio I, Rahn T, Griffith DWT (2001) Identifying the agricultural imprint on the global N2O budget using stable isotopes. J Geophysi Res Atmos 106(D9):9869–9878. https://doi.org/10.1029/2000JD900809

    Article  Google Scholar 

  42. Prinn RG, Weiss RF, Fraser PJ, Simmonds PG, Cunnold DM, Alyea FN, O'Doherty S, Salameh P, Miller BR, Huang J, Wang RHJ, Hartley DE, Harth C, Steele LP, Sturrock G, Midgley PM, McCulloch A (2000) A history of chemically and radiatively important gases in air deduced from ALE/GAGE/AGAGE. Journal of Geophysical Research: Atmospheres 105(D14):17751–17792

  43. Qin S, Clough T, Luo J, Wrage-Mönnig N, Oenema O, Zhang Y, Hu C (2017) Perturbation-free measurement of in situ dinitrogen emissions from denitrification in nitrate-rich aquatic ecosystems. Water Research 109:94–101

  44. Qin S, Hu C, Oenema O (2012) Quantifying the underestimation of soil denitrification potential as determined by the acetylene inhibition method. Soil Biol Biochem 47:14–17. https://doi.org/10.1016/j.soilbio.2011.12.019

    CAS  Article  Google Scholar 

  45. Qin S, Yuan H, Dong W, Hu C, Oenema O, Zhang Y (2013) Relationship between soil properties and the bias of N2O reduction by acetylene inhibition technique for analyzing soil denitrification potential. Soil Biol. Biochem. 66:182–187. https://doi.org/10.1016/j.soilbio.2013.07.016

    CAS  Article  Google Scholar 

  46. Ruser R, Flessa H, Russow R, Schmidt G, Buegger F, Munch JC (2006) Emission of N2O, N2 and CO2 from soil fertilized with nitrate: effect of compaction, soil moisture and rewetting. Soil Biol Biochem 38(2):263–274. https://doi.org/10.1016/j.soilbio.2005.05.005

    CAS  Article  Google Scholar 

  47. Saggar S, Giltrap DL, Li C, Tate KR (2007) Modelling nitrous oxide emissions from grazed grasslands in New Zealand. Agr Ecosyst Environ 119(1-2):205–216. https://doi.org/10.1016/j.agee.2006.07.010

    CAS  Article  Google Scholar 

  48. Saggar S, Jha N, Deslippe J, Bolan NS, Luo J, Giltrap DL, Tillman RW (2013) Denitrification and N2O: N2 production in temperate grasslands: Processes, measurements, modelling and mitigating negative impacts. Sci Total Environ 465:173–195. https://doi.org/10.1016/j.scitotenv.2012.11.050

    CAS  Article  Google Scholar 

  49. Shcherbak I, Millar N, Robertson GP (2014) Global metaanalysis of the nonlinear response of soil nitrous oxide (N2O) emissions to fertilizer nitrogen. P Natl Acad Sci U S A 111(25):9199–9204. https://doi.org/10.1073/pnas.1322434111

    CAS  Article  Google Scholar 

  50. Smith J, Wagner-Riddle C, Dunfield K (2010) Season and management related changes in the diversity of nitrifying and denitrifying bacteria over winter and spring. Appl Soil Ecol 44(2):138–146. https://doi.org/10.1016/j.apsoil.2009.11.004

    Article  Google Scholar 

  51. Snider DM, Wagner-Riddle C, Spoelstra J (2017) Stable isotopes reveal rapid cycling of soil nitrogen after manure application. J Environ Qual 46:261–271. https://doi.org/10.2134/jeq2016.07.0253

    CAS  Article  Google Scholar 

  52. Song X, Liu M, Ju X, Gao B, Su F, Chen X, Rees RM (2018) Nitrous oxide emissions increase exponentially when optimum nitrogen fertilizer rates are exceeded in the North China Plain. Environ Sci Techol 52(21):12504–12513. https://doi.org/10.1021/acs.est.8b03931

    CAS  Article  Google Scholar 

  53. Sun W, Huang Y (2012) Synthetic fertilizer management for China’s cereal crops has reduced N2O emissions since the early 2000s. Environ Pollut 160:24–27. https://doi.org/10.1016/j.envpol.2011.09.006

    CAS  Article  Google Scholar 

  54. Tan Y, Xu C, Liu D, Wu W, Lal R, Meng F (2017) Effects of optimized N fertilization on greenhouse gas emission and crop production in the North China Plain. Field Crop Res 205:135–146. https://doi.org/10.1016/j.fcr.2017.01.003

    Article  Google Scholar 

  55. Tian H, Lu C, Melillo J, Ren W, Huang Y, Xu X, Liu J (2012) Food benefit and climate warming potential of nitrogen fertilizer uses in China. Environ Res Lett 7(4):044020. https://doi.org/10.1088/1748-9326/7/4/044020

    Article  Google Scholar 

  56. Timilsina A, Bizimana F, Pandey B, Yadav RKP, Dong W, Hu C (2020a) Nitrous oxide emissions from paddies: understanding the role of rice plants. Plants-Basel 9(2):180. https://doi.org/10.3390/plants9020180

    CAS  Article  Google Scholar 

  57. Timilsina A, Dong W, Luo J, Lindsey S, Wang Y, Hu C (2020c) Nitrogen isotopic signatures and fluxes of N2O in response to land-use change on naturally occurring saline–alkaline soil. Sci Rep 10(1):1–13. https://doi.org/10.1038/s41598-020-78149-w

    CAS  Article  Google Scholar 

  58. Timilsina A, Zhang C, Pandey B, Bizimana F, Dong W, Hu C (2020b) Potential pathway of nitrous oxide formation in plants. Front Plant Sci 11:1177. https://doi.org/10.3389/fpls.2020.01177

    Article  Google Scholar 

  59. Wang Y, Hu C, Ming H, Oenema O, Schaefer DA, Dong W, Li X (2014) Methane, carbon dioxide and nitrous oxide fluxes in soil profile under a winter wheat-summer maize rotation in the North China Plain. PloS One 9(6):e98445. https://doi.org/10.1371/journal.pone.0098445

    CAS  Article  Google Scholar 

  60. Wang YY, Hu CS, Ming H, Zhang YM, Li XX, Dong WX, Oenema O (2013) Concentration profiles of CH4, CO2 and N2O in soils of a wheat–maize rotation ecosystem in North China Plain, measured weekly over a whole year. Agr Ecosyst Environ 164:260–272. https://doi.org/10.1016/j.agee.2012.10.004

    CAS  Article  Google Scholar 

  61. Wang R, Pan Z, Zheng X, Ju X, Yao Z, Butterbach-Bahl K, Huang B (2020) Using field-measured soil N2O fluxes and laboratory scale parameterization of N2O/(N2O+ N2) ratios to quantify field-scale soil N2 emissions. Soil Biol Biochem 148:107904. https://doi.org/10.1016/j.soilbio.2020.107904

    CAS  Article  Google Scholar 

  62. Wang Y, Wang E, Wang D, Huang S, Ma Y, Smith CJ, Wang L (2010) Crop productivity and nutrient use efficiency as affected by long-term fertilisation in North China Plain. Nutr Cycl Agroecosys 86(1):105–119. https://doi.org/10.1007/s10705-009-9276-5

    CAS  Article  Google Scholar 

  63. Werner C, Reiser K, Dannenmann M, Hutley LB, Jacobeit J, Butterbach-Bahl K (2014) N2O, NO, N2 and CO2 emissions from tropical savanna and grassland of northern Australia: an incubation experiment with intact soil cores. Biogeosciences 11(21):6047–6065. https://doi.org/10.5194/bg-11-6047-2014

    Article  Google Scholar 

  64. Xiong ZQ, Khalil MAK, Xing G, Shearer MJ, Butenhoff C (2009) Isotopic signatures and concentration profiles of nitrous oxide in a rice-based ecosystem during the drained crop-growing season. J Geophys Res Biogeosci 114(G2). https://doi.org/10.1029/2008JG000827

  65. Yoshida N (1988) 15N-depleted N2O as a product of nitrification. Nature 335(6190):528–529

    CAS  Article  Google Scholar 

  66. Yoshinari T, Knowles R (1976) Acetylene inhibition of nitrous oxide reduction by denitrifying bacteria. Biochem Biophys Res Common 69(3):705–710. https://doi.org/10.1016/0006-291X(76)90932-3

    CAS  Article  Google Scholar 

  67. Yuan H, Qin S, Dong W, Hu C, Manevski K, Li X (2019) Denitrification rate and controlling factors for accumulated nitrate in the deep subsoil of intensive farmlands: a case study in the North China Plain. Pedosphere 29(4):516–526. https://doi.org/10.1016/S1002-0160(17)60472-7

    Article  Google Scholar 

  68. Zhang J, Li H, Deng J, Wang L (2020) Assessing impacts of nitrogen management on nitrous oxide emissions and nitrate leaching from greenhouse vegetable systems using a biogeochemical model. Geoderma 382:114701. https://doi.org/10.1016/j.geoderma.2020.114701

    CAS  Article  Google Scholar 

Download references

Acknowledgments

Authors are thankful to editor and reviewers for their constructive comments and suggestions. We would also like to thank Mr Junqi Yang for his tireless assistance in the fieldwork.

Funding

This work was funded by the National Natural Science Foundation of China (No. 41530859) and the National Key Research and Development Program of China (2016YFD0800100, 2018YFC0213301) and (2016YFD0800102-4, 2018YFC0213300).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Chunsheng Hu.

Ethics declarations

Conflicts of interest

Authors declare no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible editor: Zucong Cai

Supplementary Information

ESM 1

(DOCX 17 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bizimana, F., Timilsina, A., Dong, W. et al. Effects of long-term nitrogen fertilization on N2O, N2 and their yield-scaled emissions in a temperate semi-arid agro-ecosystem. J Soils Sediments 21, 1659–1671 (2021). https://doi.org/10.1007/s11368-021-02903-4

Download citation

Keywords

  • Nitrogen fertilization
  • N2O and N2 emissions
  • Controlling factors
  • Wheat-maize grain yields
  • 15N in soil-emitted N2O
  • Yield-scaled N2O and N2O + N2 emissions