Spatial heterogeneity of soil fertility in coastal zones: a case study of the Yellow River Delta, China

Abstract

Purpose

At the intersection of land and sea, coastal zones are unstable areas that can suffer intensive coastal erosion or sedimentation. The Yellow River Delta, which has experienced rapid land growth, is of great significance in soil fertility research.

Materials and methods

To qualitatively and quantitatively analyse the basic soil fertility characteristics of coastal zones, we sampled six soil chemical indicators obtained from the Yellow River Delta in July 2019. Principal component analysis (PCA) and the Nemoro quality index (NQI) were integrated for the geostatistical analysis of soil fertility by using the ArcGIS and SPSS software.

Results and discussion

The NQI, modified NQI (mNQI) and PCA results significantly represented soil fertility, and the mNQI performed better than the NQI. The soil fertility met the classification of ‘III, generally fertile’. The main factors affecting soil fertility were total potassium, total nitrogen and organic matter. The soil fertility indexes declined consistently from west to east. Increasing distance from the sea significantly negatively affected soil fertility, while soil fertility positively impacted land productivity.

Conclusions

Therefore, future agricultural planning should focus on soil total nitrogen, total potassium and organic matter and control salinization to improve land productivity. The eastern coastal zone, especially the south-eastern region, should be the first area of focus.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Data availability

All data and calculation tools are available from the author Youxiao Wang (youxao_wang@163.com).

References

  1. Andrews SS, Karlen DL, Mitchell JP (2002) A comparison of soil quality indexing methods for vegetable production systems in Northern California. Agric Ecosyst Environ 90:25–45. https://doi.org/10.1016/S0167-8809(01)00174-8

    Article  Google Scholar 

  2. Ashkezari AD, Hosseinzadeh N, Chebli A, Albadi M (2018) Development of an enterprise Geographic Information System (GIS) integrated with smart grid. Sustain Energy, Grids Networks 14:25–34. https://doi.org/10.1016/j.segan.2018.02.001

    Article  Google Scholar 

  3. Bai Y, Mei L, Zuo W, Zhang Y, Gu C, Shan Y, Hu J, Dai Q (2019) Response of bacterial communities in coastal mudflat saline soil to sewage sludge amendment. Appl Soil Ecol 144:107–111. https://doi.org/10.1016/j.apsoil.2019.07.007

    Article  Google Scholar 

  4. Borja A, Bald J, Franco J, Larreta J, Muxika I, Revilla M, Rodríguez JG, Solaun O, Uriarte A, Valencia V (2009) Using multiple ecosystem components, in assessing ecological status in Spanish (Basque Country) Atlantic marine waters. Mar Pollut Bull 59:54–64. https://doi.org/10.1016/j.marpolbul.2008.11.010

    CAS  Article  Google Scholar 

  5. Budak M, Gunal H, Celik I et al (2018) Soil quality assesment of upper Tigris basin. Carpathian J Earth Environ Sci 13:301–316. https://doi.org/10.26471/cjees/2018/013/026

    Article  Google Scholar 

  6. Chen Y, Jiang X, Wang Y, Zhuang D (2018) Spatial characteristics of heavy metal pollution and the potential ecological risk of a typical mining area: a case study in China. Process Saf Environ Prot 113:204–219. https://doi.org/10.1016/j.psep.2017.10.008

    CAS  Article  Google Scholar 

  7. Chen S, Lin B, Li Y, Zhou S (2020) Spatial and temporal changes of soil properties and soil fertility evaluation in a large grain-production area of subtropical plain, China. Geoderma 357:113937. https://doi.org/10.1016/j.geoderma.2019.113937

    CAS  Article  Google Scholar 

  8. Cullimore DR (1966) A qualitative method of assessing the available nitrogen, potassium and phosphorus in the soil. J Sci Food Agric 17:321–323. https://doi.org/10.1002/jsfa.2740170709

    CAS  Article  Google Scholar 

  9. Delgado-Baquerizo M, Powell JR, Hamonts K, Reith F, Mele P, Brown MV, Dennis PG, Ferrari BC, Fitzgerald A, Young A, Singh BK, Bissett A (2017) Circular linkages between soil biodiversity, fertility and plant productivity are limited to topsoil at the continental scale. New Phytol 215:1186–1196. https://doi.org/10.1111/nph.14634

    Article  Google Scholar 

  10. Elidrissi S, Omdi FE, El Azhari A et al (2020) New application of GIS and statistical analysis in mapping the distribution of quaternary calcrete (Tensift Al Haouz area, Central Morocco). Catena 188:104419. https://doi.org/10.1016/j.catena.2019.104419

    CAS  Article  Google Scholar 

  11. Fan X, Liu G, Tang Z, Shu L (2010) Analysis on main contributors influencing soil salinization of Yellow River Delta. J Soil Water Conserv 24:139–144. https://doi.org/10.13870/j.cnki.stbcxb.2010.01.030

    Article  Google Scholar 

  12. Fang J, Lincke D, Brown S, Nicholls RJ, Wolff C, Merkens JL, Hinkel J, Vafeidis AT, Shi P, Liu M (2020) Coastal flood risks in China through the 21st century–an application of DIVA. Sci Total Environ 704:135311. https://doi.org/10.1016/j.scitotenv.2019.135311

    CAS  Article  Google Scholar 

  13. Fayiah M, Dong S, Li Y, Xu Y, Gao X, Li S, Shen H, Xiao J, Yang Y, Wessell K (2019a) The relationships between plant diversity, plant cover, plant biomass and soil fertility vary with grassland type on Qinghai-Tibetan Plateau. Agric Ecosyst Environ 286:106659. https://doi.org/10.1016/j.agee.2019.106659

    CAS  Article  Google Scholar 

  14. Fayiah M, Dong S, Li Y, Xu Y, Gao X, Li S, Shen H, Xiao J, Yang Y, Wessell K (2019b) The relationships between plant diversity, plant cover, plant biomass and soil fertility vary with grassland type on Qinghai-Tibetan Plateau. Agric Ecosyst Environ 286:106659. https://doi.org/10.1016/j.agee.2019.106659

    CAS  Article  Google Scholar 

  15. Fei X, Xiao R, Christakos G, Langousis A, Ren Z, Tian Y, Lv X (2019) Comprehensive assessment and source apportionment of heavy metals in Shanghai agricultural soils with different fertility levels. Ecol Indic 106:105508. https://doi.org/10.1016/j.ecolind.2019.105508

    CAS  Article  Google Scholar 

  16. Fotheringham AS, Charlton ME, Brunsdon C (1998) Geographically weighted regression: a natural evolution of the expansion method for spatial data analysis. Environ Plan A 30:1905–1927. https://doi.org/10.1068/a301905

    Article  Google Scholar 

  17. Fu J, Jiang D, Huang Y (2014) China km grid population distribution dataset. Acta Geograph Sin 69:41–44. https://doi.org/10.11821/dlxb2014S006

    Article  Google Scholar 

  18. Guo L, Sun Z, Ouyang Z, Han D, Li F (2017) A comparison of soil quality evaluation methods for Fluvisol along the lower Yellow River. Catena 152:135–143. https://doi.org/10.1016/j.catena.2017.01.015

    Article  Google Scholar 

  19. Hamidi Nehrani S, Askari MS, Saadat S, Delavar MA, Taheri M, Holden NM (2020) Quantification of soil quality under semi-arid agriculture in the northwest of Iran. Ecol Indic 108:105770. https://doi.org/10.1016/j.ecolind.2019.105770

    CAS  Article  Google Scholar 

  20. He H, Miao Y, Gan Y, Wei S, Tan S, Rask KA, Wang L, Dai J, Chen W, Ekelund F (2020) Soil bacterial community response to long-term land use conversion in Yellow River Delta. Appl Soil Ecol 156:103709. https://doi.org/10.1016/j.apsoil.2020.103709

    Article  Google Scholar 

  21. Hu M, Huang Y (2020) Atakrig: an R package for multivariate area-to-area and area-to-point kriging predictions. Comput Geosci 139:104471. https://doi.org/10.1016/j.cageo.2020.104471

    Article  Google Scholar 

  22. Huang Y, Jiang D, Fu J (2014) China km grid GDP distribution dataset. Acta Geograph Sin 69:45–48. https://doi.org/10.11821/dlxb2014S007

    Article  Google Scholar 

  23. Janssen BH, de Willigen P (2006) Ideal and saturated soil fertility as bench marks in nutrient management. 1. Outline of the framework. Agriculture. Ecosyst Environ 116:132–146. https://doi.org/10.1016/j.agee.2006.03.014

    CAS  Article  Google Scholar 

  24. Ji H, Pan S, Chen S (2020) Impact of river discharge on hydrodynamics and sedimentary processes at Yellow River Delta. Mar Geol 425:106210. https://doi.org/10.1016/j.margeo.2020.106210

    Article  Google Scholar 

  25. Jiang M, Xu L, Chen X, Zhu H, Fan H (2020) Soil quality assessment based on a minimum data set: a case study of a county in the typical river delta wetlands. Sustainability (Switzerland) 12:1–21. https://doi.org/10.3390/su12219033

    CAS  Article  Google Scholar 

  26. Jiao S, Li J, Li Y, Xu Z, Kong B, Li Y, Shen Y (2020) Variation of soil organic carbon and physical properties in relation to land uses in the Yellow River Delta, China. Sci Rep 10:1–12. https://doi.org/10.1038/s41598-020-77303-8

    CAS  Article  Google Scholar 

  27. Jin G, Fang W, Shafi M, Wu D, Li Y, Zhong B, Ma J, Liu D (2019) Source apportionment of heavy metals in farmland soil with application of APCS-MLR model: a pilot study for restoration of farmland in Shaoxing City Zhejiang, China. Ecotoxicol Environ Saf 184:109495. https://doi.org/10.1016/j.ecoenv.2019.109495

    CAS  Article  Google Scholar 

  28. Kan W, Wu Q (1994) Preliminary study on a method for quantitative comprehensive evaluation of soil fertility. Chin J Soil Sci 245-247. https://doi.org/10.19336/j.cnki.trtb.1994.06.002

  29. Levi N, Karnieli A, Paz-Kagan T (2020) Using reflectance spectroscopy for detecting land-use effects on soil quality in drylands. Soil Tillage Res 199:104571. https://doi.org/10.1016/j.still.2020.104571

    Article  Google Scholar 

  30. Li P, Zhang T, Wang X, Yu D (2013) Development of biological soil quality indicator system for subtropical China. Soil Tillage Res 126:112–118. https://doi.org/10.1016/j.still.2012.07.011

    Article  Google Scholar 

  31. Li J, Pu L, Zhu M, Zhang J, Li P, Dai X, Xu Y, Liu L (2014) Evolution of soil properties following reclamation in coastal areas: a review. Geoderma 226–227:130–139. https://doi.org/10.1016/j.geoderma.2014.02.003

    CAS  Article  Google Scholar 

  32. Li S, Lei Y, Zhang Y, Liu J, Shi X, Jia H, Wang C, Chen F, Chu Q (2019a) Rational trade-offs between yield increase and fertilizer inputs are essential for sustainable intensification: a case study in wheat–maize cropping systems in China. Sci Total Environ 679:328–336. https://doi.org/10.1016/j.scitotenv.2019.05.085

    CAS  Article  Google Scholar 

  33. Li X, Wang D, Ren Y, Wang Z, Zhou Y (2019b) Soil quality assessment of croplands in the black soil zone of Jilin Province, China: establishing a minimum data set model. Ecol Indic 107:105251. https://doi.org/10.1016/j.ecolind.2019.03.028

    CAS  Article  Google Scholar 

  34. Liu Z, Lu B, Xiao H, Liu D, Li X, Wang LA, Urbanovich O, Nagorskaya L (2019) Effect of mixed solutions of heavy metal eluents on soil fertility and microorganisms. Environ Pollut 254:254. https://doi.org/10.1016/j.envpol.2019.112968

    CAS  Article  Google Scholar 

  35. Luo X, Liu G, Xia Y, Chen L, Jiang Z, Zheng H, Wang Z (2017) Use of biochar-compost to improve properties and productivity of the degraded coastal soil in the Yellow River Delta, China. J Soils Sediments 17:780–789. https://doi.org/10.1007/s11368-016-1361-1

    CAS  Article  Google Scholar 

  36. Luo J, Zhang X, Wu Y, Shen J, Shen L, Xing X (2018) Urban land expansion and the floating population in China: for production or for living? Cities 74:219–228. https://doi.org/10.1016/j.cities.2017.12.007

    Article  Google Scholar 

  37. Mahmoody Vanolya N, Jelokhani-Niaraki M, Toomanian A (2019) Validation of spatial multicriteria decision analysis results using public participation GIS. Appl Geogr 112:102061. https://doi.org/10.1016/j.apgeog.2019.102061

    Article  Google Scholar 

  38. Mi W, Sun Y, Xia S, Zhao H, Mi W, Brookes PC, Liu Y, Wu L (2018) Effect of inorganic fertilizers with organic amendments on soil chemical properties and rice yield in a low-productivity paddy soil. Geoderma 320:23–29. https://doi.org/10.1016/j.geoderma.2018.01.016

    CAS  Article  Google Scholar 

  39. Nabiollahi K, Golmohamadi F, Taghizadeh-Mehrjardi R, Kerry R, Davari M (2018) Assessing the effects of slope gradient and land use change on soil quality degradation through digital mapping of soil quality indices and soil loss rate. Geoderma 318:16–28. https://doi.org/10.1016/j.geoderma.2017.12.024

    CAS  Article  Google Scholar 

  40. National Soil Census Office (1998) Chinese soil, 1st edn. China Agricultural Press, Beijing

    Google Scholar 

  41. Ottinger M, Kuenzer C, Liu G, Wang S, Dech S (2013) Monitoring land cover dynamics in the Yellow River Delta from 1995 to 2010 based on Landsat 5 TM. Appl Geogr 44:53–68. https://doi.org/10.1016/j.apgeog.2013.07.003

    Article  Google Scholar 

  42. Panico SC, Esposito F, Memoli V, Vitale L, Polimeno F, Magliulo V, Maisto G, de Marco A (2020) Variations of agricultural soil quality during the growth stages of sorghum and sunflower. Appl Soil Ecol 152:152. https://doi.org/10.1016/j.apsoil.2020.103569

    Article  Google Scholar 

  43. Patzel N, Sticher H, Karlen DL (2000) Soil fertility-phenomenon and concept. J Plant Nutr Soil Sci 163:129–142. https://doi.org/10.1002/(SICI)1522-2624(200004)163:2<129::AID-JPLN129>3.0.CO;2-D

    CAS  Article  Google Scholar 

  44. Peigné J, Vian JF, Payet V, Saby NPA (2018) Soil fertility after 10 years of conservation tillage in organic farming. Soil Tillage Res 175:194–204. https://doi.org/10.1016/j.still.2017.09.008

    Article  Google Scholar 

  45. Qi Y, Darilek JL, Huang B, Zhao Y, Sun W, Gu Z (2009) Evaluating soil quality indices in an agricultural region of Jiangsu Province, China. Geoderma 149:325–334. https://doi.org/10.1016/j.geoderma.2008.12.015

    Article  Google Scholar 

  46. Santos-Francés F, Martínez-Graña A, Ávila-Zarza C, Criado M, Sánchez Y (2019) Comparison of methods for evaluating soil quality of semiarid ecosystem and evaluation of the effects of physico-chemical properties and factor soil erodibility (Northern Plateau, Spain). Geoderma 354:113872. https://doi.org/10.1016/j.geoderma.2019.07.030

    CAS  Article  Google Scholar 

  47. Sun H, Jin Q, Wang Q, Shao C, Zhang L, Guan Y, Tian H, Li M, Zhang Y (2020) Effects of soil quality on effective ingredients of Astragalus mongholicus from the main cultivation regions in China. Ecol Indic 114:106296. https://doi.org/10.1016/j.ecolind.2020.106296

    CAS  Article  Google Scholar 

  48. Tang L, Hayashi K, Ohigashi K, Shimura M, Kohyama K (2019) Developing characterization factors to quantify management impacts on soil quality of paddy fields within life cycle assessment. J Clean Prod 238:117890. https://doi.org/10.1016/j.jclepro.2019.117890

    CAS  Article  Google Scholar 

  49. Tresch S, Moretti M, Le Bayon RC et al (2018) Urban soil quality assessment-a comprehensive case study dataset of urban garden soils. Front Environ Sci 6:1–5. https://doi.org/10.3389/fenvs.2018.00136

    Article  Google Scholar 

  50. Valiente R, Escobar F, Pearce J, Bilal U, Franco M, Sureda X (2020) Estimating and mapping cigarette butt littering in urban environments: a GIS approach. Environ Res 183:109142. https://doi.org/10.1016/j.envres.2020.109142

    CAS  Article  Google Scholar 

  51. Vasu D, Singh SK, Ray SK, Duraisami VP, Tiwary P, Chandran P, Nimkar AM, Anantwar SG (2016) Soil quality index (SQI) as a tool to evaluate crop productivity in semi-arid Deccan plateau, India. Geoderma 282:70–79. https://doi.org/10.1016/j.geoderma.2016.07.010

    CAS  Article  Google Scholar 

  52. Vrščaj B, Poggio L, Marsan FA (2008) A method for soil environmental quality evaluation for management and planning in urban areas. Landsc Urban Plan 88:81–94. https://doi.org/10.1016/j.landurbplan.2008.08.005

    Article  Google Scholar 

  53. Wang H, Yao L, Huang B et al (2019a) An integrated approach to exploring soil fertility from the perspective of rice (Oryza sativa L.) yields. Soil Tillage Res. https://doi.org/10.1016/j.still.2019.104322

  54. Wang H, Yao L, Huang B et al (2019b) An integrated approach to exploring soil fertility from the perspective of rice (Oryza sativa L.) yields. Soil Tillage Res. https://doi.org/10.1016/j.still.2019.104322

  55. Wang X, Guo T, Wang Y, Xing Y, Wang Y, He X (2020) Exploring the optimization of water and fertilizer management practices for potato production in the sandy loam soils of Northwest China based on PCA. Agric Water Manag 237:106180. https://doi.org/10.1016/j.agwat.2020.106180

    Article  Google Scholar 

  56. Wu D (2020) Spatially and temporally varying relationships between ecological footprint and influencing factors in China’s provinces using Geographically Weighted Regression (GWR). J Clean Prod 261:121089. https://doi.org/10.1016/j.jclepro.2020.121089

    Article  Google Scholar 

  57. Wu C, Liu G, Huang C, Liu Q (2019) Soil quality assessment in Yellow River Delta: establishing a minimum data set and fuzzy logic model. Geoderma 334:82–89. https://doi.org/10.1016/j.geoderma.2018.07.045

    CAS  Article  Google Scholar 

  58. Xia M, Zhao B, Hao X, Zhang J (2015) Soil quality in relation to agricultural production in the North China Plain. Pedosphere 25:592–604. https://doi.org/10.1016/S1002-0160(15)30039-4

    CAS  Article  Google Scholar 

  59. Xu X, Chen Z, Feng Z (2019) From natural driving to artificial intervention: changes of the Yellow River estuary and delta development. Ocean Coast Manag 174:63–70. https://doi.org/10.1016/j.ocecoaman.2019.03.009

    Article  Google Scholar 

  60. Yageta Y, Osbahr H, Morimoto Y, Clark J (2019) Comparing farmers’ qualitative evaluation of soil fertility with quantitative soil fertility indicators in Kitui County, Kenya. Geoderma 344:153–163. https://doi.org/10.1016/j.geoderma.2019.01.019

    CAS  Article  Google Scholar 

  61. Yang Y, Tong X, Ruan H (2012) Comprehensive evaluation of soil fertility quality based on field data. Transact Chin Soc Agric Eng 28:151–156. https://doi.org/10.3969/j.issn.1002-6819.2012.z2.026

    CAS  Article  Google Scholar 

  62. Yuan Y, Cave M, Xu H, Zhang C (2020) Exploration of spatially varying relationships between Pb and Al in urban soils of London at the regional scale using geographically weighted regression (GWR). J Hazard Mater 393:122377. https://doi.org/10.1016/j.jhazmat.2020.122377

    CAS  Article  Google Scholar 

  63. Zeraatpisheh M, Bakhshandeh E, Hosseini M, Alavi SM (2020) Assessing the effects of deforestation and intensive agriculture on the soil quality through digital soil mapping. Geoderma 363:114139. https://doi.org/10.1016/j.geoderma.2019.114139

    CAS  Article  Google Scholar 

  64. Zhang X, Zhu A, Xin X, Yang W, Zhang J, Ding S (2018) Tillage and residue management for long-term wheat-maize cropping in the North China Plain: I. Crop yield and integrated soil fertility index. Field Crop Res 221:157–165. https://doi.org/10.1016/j.fcr.2018.02.025

    Article  Google Scholar 

  65. Zhang D, Shi X, Xu H et al (2020) A GIS-based spatial multi-index model for flood risk assessment in the Yangtze River Basin, China. Environ Impact Assess Rev. https://doi.org/10.1016/j.eiar.2020.106397

  66. Zheng R, Zhao J, Zhou X et al (2016) Land use effects on the distribution and speciation of heavy metals and arsenic in coastal soils on Chongming Island in the Yangtze River Estuary, China. Pedosphere 26:74–84. https://doi.org/10.1016/S1002-0160(15)60024-8

    CAS  Article  Google Scholar 

Download references

Funding

This research was supported by the National Key R&D Program of China, Grant No. 2017YFD0300403; the Strategic Priority Research Program of Chinese Academy of Sciences, Grant No. XDA23050101; and the National Natural Science Foundation of China, Grant No. 42001227.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Gaohuan Liu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

The work described is an original research that has not been published previously and is not under consideration for publication elsewhere in whole or in part.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible editor: Jun Zhou

Appendix

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Liu, G. & Zhao, Z. Spatial heterogeneity of soil fertility in coastal zones: a case study of the Yellow River Delta, China. J Soils Sediments 21, 1826–1839 (2021). https://doi.org/10.1007/s11368-021-02891-5

Download citation

Keywords

  • Yellow River Delta
  • Soil fertility index
  • Principal component analysis
  • Nemoro quality index
  • Geostatistical analysis