Nitrogen transformation rates in the Himalayan soils at different temperature and elevation conditions

Abstract

Purpose

Vast expanses of climatically sensitive ecosystems, such as tropical montane, remain unstudied in terms of factors controlling nitrogen (N) availability and in turn productivity. Temperature and elevation are two important, yet understudied, factors which decide the fate of N in montane ecosystems. Therefore, the present study aimed to quantify and understand changes in rates of N transformation processes in tropical montane soils of the Himalayas under different temperature-elevation conditions.

Materials and methods

The 15N isotope dilution technique was employed to quantify the rates of gross N transformations in soils collected at two depth intervals (0–20 cm and 20–40 cm) from five elevations (3000 m, 2500 m, 2000 m, 1500 m, and 1000 m above sea level) of the Garhwal Himalayas. The rates were measured at low (10 °C) and high temperature (23 °C) conditions to decipher the effect of temperature change on N cycling in montane soils.

Results and discussion

The results indicated a significant increase in gross N mineralization rates under the high temperature condition compared to the low. Interestingly, gross nitrification rates remained unaffected of temperature change. Increase in gross N mineralization at high temperature condition was accompanied with increased ammonium (NH4+) consumption, which was largely in the form of NH4+ immobilization. In general, gross N transformation rates in the top soils showed higher response to change in temperature and elevation conditions than the bottom soils.

Conclusion

Increase in rates of N mineralization and other soil N cycling processes at higher temperature suggests potential acceleration in N turnover due to warming in the Himalayan soils. Increased NH4+ immobilization and poor sensitivity of nitrification to temperature are likely to increase soil N conservation at higher temperature. The inconsistent variation in N transformation rates with elevation suggested higher control of edaphic factors on soil N cycling at a particular elevation.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Andersen MK, Jensen LS (2001) Low soil temperature effects on short-term gross N mineralisation–immobilisation turnover after incorporation of a green manure. Soil Biol Biochem 33:511–521. https://doi.org/10.1016/S0038-0717(00)00192-9

    CAS  Article  Google Scholar 

  2. Auyeung DSN, Suseela V, Dukes JS (2012) Warming and drought reduce temperature sensitivity of nitrogen transformations. Glob Chang Biol 19:662–676. https://doi.org/10.1111/gcb.12063

    Article  Google Scholar 

  3. Bagchi D, Singh RP (2011) Ground water brochure, district Tehri Garhwal, Uttarakhand. Ministry of Water Resources, Government of India, Central Ground Water Board, Dehradun

    Google Scholar 

  4. Bauters M, Verbeeck H, Rütting T, Barthel M, Mujinya BB, Bamba F, Bodé S, Boyemba F, Bulonza E, Carlsson E, Eriksson L, Makelele I, Six J, Ntaboba LC, Boeckx P (2019) Contrasting nitrogen fluxes in African tropical forests of the Congo Basin. Ecol Monogr 89:e01342. https://doi.org/10.1002/ecm.1342

    Article  Google Scholar 

  5. Chandra J, Rawat VS, Rawat YS, Ram J (2010) Vegetational diversity along an altitudinal range in Garhwal Himalaya. Int J Biodvers Conserv 2:014–018

    Google Scholar 

  6. Dalias P, Anderson JM, Bottner P, Coûteaux M-M (2002) Temperature responses of net nitrogen mineralization and nitrification in conifer forest soils incubated under standard laboratory conditions. Soil Biol Biochem 34:691–701. https://doi.org/10.1016/S0038-0717(01)00234-6

    CAS  Article  Google Scholar 

  7. Davidson EA, Janssens IA (2006) Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440:165–173. https://doi.org/10.1038/nature04514

    CAS  Article  Google Scholar 

  8. Drury CF, Hart SC, Yan XM (2008) Nitrification techniques for soils. In: Carter MR, Gregorich EG (eds) Soil sampling and methods of analysis, 2nd edn. CRC Press, Boca Raton, pp 495–513

  9. Frank D, Reichstein M, Bahn M, Thonicke K, Frank D, Mahecha MD, Smith P, van der Velde M, Vicca S, Babst F, Beer C, Buchmann N, Canadell JG, Ciais P, Cramer W, Ibrom A, Miglietta F, Poulter B, Rammig A, Seneviratne SI, Walz A, Wattenbach M, Zavala MA, Zscheischler J (2015) Effects of climate extremes on the terrestrial carbon cycle: concepts, processes and potential future impacts. Glob Chang Biol 21:2861–2880. https://doi.org/10.1111/gcb.12916

    Article  Google Scholar 

  10. Fraser FC, Hallett PD, Wookey PA, Hartley IP, Hopkins DW (2013) How do enzymes catalysing soil nitrogen transformations respond to changing temperatures? Biol Fertil Soils 49:99–103. https://doi.org/10.1007/s00374-012-0722-1

    CAS  Article  Google Scholar 

  11. Gairola S, Sharma CM, Ghildiyal SK, Suyal S (2011) Live tree biomass and carbon variation along an altitudinal gradient in moist temperate valley slopes of the Garhwal Himalaya (India). Curr Sci 100:1862–1870

    Google Scholar 

  12. Giovannini G, Poggio G, Sequi P (1975) Use of an automatic CHN analyzer to determine organic and inorganic carbon in soils. Commun Soil Sci Plan 6:39–49. https://doi.org/10.1080/00103627509366544

    CAS  Article  Google Scholar 

  13. Grundmann GL, Renault P, Rosso L, Bardin R (1995) Differential effects of soil water content and temperature on nitrification and aeration. Soil Sci Soc Am J 59:1342–1349. https://doi.org/10.2136/sssaj1995.03615995005900050021x

    CAS  Article  Google Scholar 

  14. Hart SC, Perry DA (2001) Transferring soils from high- to low-elevation forests increases nitrogen cycling rates: climate change implications. Glob Chang Biol 5:23–32. https://doi.org/10.1046/j.1365-2486.1998.00196.x

    Article  Google Scholar 

  15. Hooker TD, Stark JM (2008) Soil C and N cycling in three semiarid vegetation types: response to an in situ pulse of plant detritus. Soil Biol Biochem 40:2678–2685. https://doi.org/10.1016/j.soilbio.2008.07.015

    CAS  Article  Google Scholar 

  16. Huang Z, Xu Z, Blumfield TJ, Chen C, Bubb K (2008) Soil nitrogen mineralization and fate of (15NH4)2SO4 in field-incubated soil in a hardwood plantation of subtropical Australia: the effect of mulching. J Soils Sediments 8:389–397. https://doi.org/10.1007/s11368-008-0049-6

    CAS  Article  Google Scholar 

  17. Jansen-Willems AB, Lanigan GJ, Clough TJ, Andresen LC, Müller C (2016) Long-term elevation of temperature affects organic N turnover and associated N2O emissions in a permanent grassland soil. Soil 2:601–614. https://doi.org/10.5194/soil-2-601-2016

    CAS  Article  Google Scholar 

  18. Kirkham D, Bartholomew WV (1954) Equations for following nutrient transformations in soil, utilizing tracer data1. Soil Sci Soc Am J 18:33–34. https://doi.org/10.2136/sssaj1954.03615995001800010009x

    CAS  Article  Google Scholar 

  19. Kitayama K, Aiba S, Majalap-Lee N, Ohsawa M (1998) Soil nitrogen mineralization rates of rainforests in a matrix of elevations and geological substrates on mount Kinabalu, Borneo. Ecol Res 13:301–312. https://doi.org/10.1046/j.1440-1703.1998.00264.x

    Article  Google Scholar 

  20. Knoepp JD, Swank WT (1998) Rates of nitrogen mineralization across an elevation and vegetation gradient in the southern Appalachians. Plant Soil 204:235–241

    CAS  Article  Google Scholar 

  21. Knoepp JD, Vose JM (2007) Regulation of nitrogen mineralization and nitrification in southern Appalachian ecosystems: separating the relative importance of biotic vs. abiotic controls. Pedobiologia 51:89–97. https://doi.org/10.1016/j.pedobi.2007.02.002

    CAS  Article  Google Scholar 

  22. Knorr W, Prentice IC, House JI, Holland EA (2005) Long-term sensitivity of soil carbon turnover to warming. Nature 433:298–301. https://doi.org/10.1038/nature03226

    CAS  Article  Google Scholar 

  23. Krishna AP, Kumar S (2013) Landslide hazard assessment along a mountain highway in the Indian Himalayan Region (IHR) using remote sensing and computational models. In: Michel U, Civco DL, Schulz K, Ehlers M, Nilolakopoulos KG (eds) Earth Resources and Environmental Remote Sensing/GIS Applications IV. International Society for Optics and Photonics, Proceedings of SPIE- 8993, Germany, pp 164–176. https://doi.org/10.1117/12.2029080

  24. Marrs RH, Proctor J, Heaney A, Mountford MD (1988) Changes in soil nitrogen-mineralization and nitrification along an altitudinal transect in tropical rain forest in Costa Rica. J Ecol 76:466–482. https://doi.org/10.2307/2260606

    Article  Google Scholar 

  25. Martinson GO, Corre MD, Veldkamp E (2013) Responses of nitrous oxide fluxes and soil nitrogen cycling to nutrient additions in montane forests along an elevation gradient in southern Ecuador. Biogeochemistry 112:625–636. https://doi.org/10.1007/s10533-012-9753-9

    CAS  Article  Google Scholar 

  26. Maynard DG, Kalra YP, Crumbaugh JA (2008) Nitrate and exchangeable ammonium nitrogen. In: Carter MR, Gregorich EG (eds) Soil sampling and methods of analysis, 2nd edn. CRC Press, Bota Raton, pp 71–80

  27. Moser G, Leuschner C, Hertel D et al (2011) Elevation effects on the carbon budget of tropical mountain forests (S Ecuador): the role of the belowground compartment. Glob Chang Biol 17:2211–2226. https://doi.org/10.1111/j.1365-2486.2010.02367.x

    Article  Google Scholar 

  28. Mynard DG, Curran MP (2008) Bulk density measurement in forest soils. In: Carter MR, Gregorich EG (eds) Soil sampling and methods of analysis, 2nd edn. CRC Press, Boca Raton, pp 863–869

    Google Scholar 

  29. Nadelhoffer KJ, Shaver GR, Giblin A, Rastetter EB (1997) Potential impacts of climate change on nutrient cycling, decomposition, and productivity in arctic ecosystems. In: Oechel WC, Callaghan TV, Gilmanov T, Holten JI, Maxwell B, Molau U, Sveinbjörnsson B (eds) Global change and arctic terrestrial ecosystems. Springer New York, NY, pp 349–364

    Google Scholar 

  30. Niboyet A, Le Roux X, Dijkstra P et al (2011) Testing interactive effects of global environmental changes on soil nitrogen cycling. Ecosphere 2:art56. https://doi.org/10.1890/ES10-00148.1

    Article  Google Scholar 

  31. Nottingham AT, Turner BL, Whitaker J, Ostle NJ, McNamara NP, Bardgett RD, Salinas N, Meir P (2015) Soil microbial nutrient constraints along a tropical forest elevation gradient: a belowground test of a biogeochemical paradigm. Biogeosciences 12:6071–6083. https://doi.org/10.5194/bg-12-6071-2015

    CAS  Article  Google Scholar 

  32. Nottingham AT, Turner BL, Whitaker J, Ostle N, Bardgett RD, McNamara NP, Salinas N, Meir P (2016) Temperature sensitivity of soil enzymes along an elevation gradient in the Peruvian Andes. Biogeochemistry 127:217–230. https://doi.org/10.1007/s10533-015-0176-2

    CAS  Article  Google Scholar 

  33. Oertel C, Matschullat J, Zurba K, Zimmermann F, Erasmi S (2016) Greenhouse gas emissions from soils—a review. Geochemistry 76:327–352. https://doi.org/10.1016/j.chemer.2016.04.002

    CAS  Article  Google Scholar 

  34. Pan Y, Birdsey RA, Fang J, Houghton R, Kauppi PE, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, Canadell JG, Ciais P, Jackson RB, Pacala SW, McGuire AD, Piao S, Rautiainen A, Sitch S, Hayes D (2011) A large and persistent carbon sink in the world’s forests. Science 333:988–993. https://doi.org/10.1126/science.1201609

    CAS  Article  Google Scholar 

  35. Powers RF (1990) Nitrogen mineralization along an altitudinal gradient: interactions of soil temperature, moisture, and substrate quality. Forest Ecol Manag 30:19–29. https://doi.org/10.1016/0378-1127(90)90123-S

    Article  Google Scholar 

  36. Rawat VS, Chandra J (2014) Vegetational diversity analysis across different habitats in Garhwal Himalaya. Aust J Bot 2014:5–5. https://doi.org/10.1155/2014/538242

    Article  Google Scholar 

  37. Rayment GE, Higginson FR (1992) Australian laboratory handbook of soil and water chemical methods, 3rd edn. Inkata Press, Melbourne

    Google Scholar 

  38. Schütt M, Borken W, Spott O, Stange CF, Matzner E (2014) Temperature sensitivity of C and N mineralization in temperate forest soils at low temperatures. Soil Biol Biochem 69:320–327. https://doi.org/10.1016/j.soilbio.2013.11.014

    CAS  Article  Google Scholar 

  39. Selmants PC, Adair KL, Litton CM, Giardina CP, Schwartz E (2016) Increases in mean annual temperature do not alter soil bacterial community structure in tropical montane wet forests. Ecosphere 7:e01296. https://doi.org/10.1002/ecs2.1296

    Article  Google Scholar 

  40. Shaw MR, Harte J (2001) Response of nitrogen cycling to simulated climate change: differential responses along a subalpine ecotone. Glob Chang Biol 7:193–210. https://doi.org/10.1046/j.1365-2486.2001.00390.x

    Article  Google Scholar 

  41. Silver WL, Thompson AW, Herman DJ, Firestone MK (2011) Is there evidence for limitations to nitrogen mineralization in upper montane tropical forests? In: Scatena FN, Bruijnzeel LA, Hamilton LS (eds) Tropical montane cloud forests: science for conservation and management. Cambridge University Press, Cambridge, pp 418–427

    Google Scholar 

  42. Smith P, Fang C, Julián JM, Moncrieff JB (2008) Impact of global warming on soil organic carbon. Adv Agron 97:1–43. https://doi.org/10.1016/S0065-2113(07)00001-6

    CAS  Article  Google Scholar 

  43. Stark JM, Hart SC (1996) Diffusion technique for preparing salt solutions, Kjeldahl digests, and persulfate digests for nitrogen-15 analysis. Soil Sci Soc Am J 60:1846–1855. https://doi.org/10.2136/sssaj1996.03615995006000060033x

    CAS  Article  Google Scholar 

  44. Stewart CG (2000) A test of nutrient limitation in two tropical montane forests using root ingrowth cores. Biotropica 32:369–373

    Article  Google Scholar 

  45. Tanner EVJ, Vitousek PM, Cuevas E (1998) Experimental investigation of nutrient limitation of forest growth on wet tropical mountains. Ecology 79:10–22. https://doi.org/10.1890/0012-9658(1998)079[0010:EIONLO]2.0.CO;2

    Article  Google Scholar 

  46. Unger M, Leuschner C, Homeier J (2010) Variability of indices of macronutrient availability in soils at different spatial scales along an elevation transect in tropical moist forests (NE Ecuador). Plant Soil 336:443–458. https://doi.org/10.1007/s11104-010-0494-z

    CAS  Article  Google Scholar 

  47. Wan X, Huang Z, He Z, Yu Z, Wang M, Davis MR, Yang Y (2015) Soil C:N ratio is the major determinant of soil microbial community structure in subtropical coniferous and broadleaf forest plantations. Plant Soil 387:103–116. https://doi.org/10.1007/s11104-014-2277-4

    CAS  Article  Google Scholar 

  48. Wang C, Chen Z, Unteregelsbacher S, Lu H, Gschwendtner S, Gasche R, Kolar A, Schloter M, Kiese R, Butterbach-Bahl K, Dannenmann M (2016) Climate change amplifies gross nitrogen turnover in montane grasslands of Central Europe in both summer and winter seasons. Glob Chang Biol 22:2963–2978. https://doi.org/10.1111/gcb.13353

    Article  Google Scholar 

  49. Wardle DA (1992) A comparative assessment of factors which influence microbial biomass carbon and nitrogen levels in soil. Biol Rev 67:321–358. https://doi.org/10.1111/j.1469-185X.1992.tb00728.x

    Article  Google Scholar 

  50. Wilcke W, Leimer S, Peters T, Emck P, Rollenbeck R, Trachte K, Valarezo C, Bendix J (2013) The nitrogen cycle of tropical montane forest in Ecuador turns inorganic under environmental change. Global Biogeochem Cy 27:1194–1204. https://doi.org/10.1002/2012GB004471

    CAS  Article  Google Scholar 

  51. Yang Y, Ji C, Chen L, Ding J, Cheng X, Robinson D (2015) Edaphic rather than climatic controls over 13C enrichment between soil and vegetation in alpine grasslands on the Tibetan Plateau. Funct Ecol 29:839–848. https://doi.org/10.1111/1365-2435.12393

    Article  Google Scholar 

  52. Yuan L, He N, Wen X et al (2016) Patterns and regulating mechanisms of soil nitrogen mineralization and temperature sensitivity in Chinese terrestrial ecosystems. Agric Ecosyst Environ 215:40–46. https://doi.org/10.1016/j.agee.2015.09.012

    CAS  Article  Google Scholar 

  53. Zhang S, Chen D, Sun D, Wang X, Smith JL, du G (2012) Impacts of altitude and position on the rates of soil nitrogen mineralization and nitrification in alpine meadows on the eastern Qinghai–Tibetan Plateau, China. Biol Fertil Soils 48:393–400. https://doi.org/10.1007/s00374-011-0634-5

    CAS  Article  Google Scholar 

Download references

Acknowledgments

We are thankful to M. A. Hussain, Wildlife Institute of India, Dehradun, for logistic support during sampling. We are also thankful to Nidhi Tripathi, Arvind Jiyal, and Arvind Kumar for help during sample collection.

Funding

The study was funded by the Department of Space, Government of India.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sanjeev Kumar.

Ethics declarations

The authors declare no conflict of interest. No animal participated during the study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible editor: Zhiqun Huang

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sharma, N., Kumar, S. Nitrogen transformation rates in the Himalayan soils at different temperature and elevation conditions. J Soils Sediments (2020). https://doi.org/10.1007/s11368-020-02722-z

Download citation

Keywords

  • Gross mineralization
  • Gross nitrification
  • Himalayas
  • Soils
  • Temperature
  • Elevation