Land-use type, and land management and disturbance affect soil δ15N: a review

Abstract

Purpose

We compared the patterns of natural abundance of nitrogen (N) isotope ratio (δ15N) of total soil N among cropland, forest, and grassland soils, with special interests in the effects of farming system on cropland and grassland, and climate zone on forest soils, as well as the general effect of land-use change and site disturbance.

Material and methods

We analyzed data on δ15N of terrestrial N sources (n = 532), cropland (n = 168), forest (n = 227 for organic and 428 for mineral soil layers), and grassland soils (n = 624).

Results and discussion

Forest soils had the lowest δ15N (– 1.0 ± 0.2‰ and + 3.1 ± 0.2‰ for mineral and organic soil layers, respectively), reflecting the influence of the 15N-depleted source N and the more closed nature of the N cycle. Tropical forest soil had higher δ15N than other climate zones, reflecting the influence of the high N availability and loss in tropical forests. The low δ15N in subtropical forest soils likely reflected the influence of the high rate of deposition of 15N-depleted N. The δ15N of cropland (+ 5.0 ± 0.2‰) and grassland (+ 6.2 ± 0.1‰) soils was greater with manure than with synthetic fertilizer applications. Soil δ15N was also affected by land-use change and was often increased (followed by progressive decreases) by site disturbance.

Conclusions

Land-use type and land management effects on soil δ15N reflect changes in both the N sources and loss, while land disturbance effects are primarily associated with the degree of N loss. We also conclude that subtropical forest soil δ15N is affected by the high rate of atmospheric N deposition.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Aaltonen H, Köster K, Köster E, Berninger F, Zhou X, Karhu K, Biasi C, Bruckman V, Palviainen M, Pumpanen J (2019) Forest fires in Canadian permafrost region: the combined effects of fire and permafrost dynamics on soil organic matter quality. Biogeochemistry 143:257–274. https://doi.org/10.1007/s10533-019-00560-x

    CAS  Article  Google Scholar 

  2. Awiti AO, Walsh MG, Kinyamario J (2008) Dynamics of topsoil carbon and nitrogen along a tropical forest-cropland chronosequence: evidence from stable isotope analysis and spectroscopy. Agric Ecosyst Environ 127:265–272. https://doi.org/10.1016/j.agee.2008.04.012

    CAS  Article  Google Scholar 

  3. Amundson R, Austin AT, Schuur EAG, Yoo K, Matzek V, Kendall C, Uebersax A, Brenner D, Baisden WT (2003) Global patterns of isotopic composition of soil and plant nitrogen. Glob Biogeochem Cycles 17:1031. https://doi.org/10.1029/2002GB001903

    CAS  Article  Google Scholar 

  4. Billen G, Garnier J, Lassaletta L (2013) The nitrogen cascade from agricultural soils to the sea: modelling nitrogen transfers at regional watershed and global scales. Philos Trans R Soc B-Biol Sci 368:20130123. https://doi.org/10.1098/rstb.2013.0123

    CAS  Article  Google Scholar 

  5. Bai SH, Sun FF, Xu ZH, Blumfield TJ, Chen CR, Wild C (2012) Appraisal of 15N enrichment and 15N natural abundance methods for estimating N2 fixation by understorey Acacia leiocalyx and A. disparimma in a native forest of subtropical Australia. J Soils Sediments 12:653–662. https://doi.org/10.1007/s11368-012-0492-2

    CAS  Article  Google Scholar 

  6. Bai SH, Reverchon F, Xu CY, Xu ZH, Blumfield TJ, Zhao HT, Van Zwieten L, Wallace HM (2015a) Wood biochar increases nitrogen retention in field settings mainly through abiotic processes. Soil Biol Biochem 90:232–240. https://doi.org/10.1016/j.soilbio.2015.08.007

    CAS  Article  Google Scholar 

  7. Bai SH, Xu CY, Xu ZH, Blumfield TJ, Zhao HT, Wallace H, Reverchon F, Van Zwieten L (2015b) Soil and foliar nutrient and nitrogen isotope composition (δ15N) at 5 years after poultry litter and green waste biochar amendment in a macadamia orchard. Environ Sci Pollut Res 22:3803–3809. https://doi.org/10.1007/s11356-014-3649-2

    CAS  Article  Google Scholar 

  8. Bai SH, Xu ZH, Blumfield TJ, Reverchon F (2015c) Human footprints in urban forests: implication of nitrogen deposition for nitrogen and carbon storage. J Soils Sediments 15:1927–1936. https://doi.org/10.1007/s11368-015-1205-4

    CAS  Article  Google Scholar 

  9. Billings SA, Richter DD (2006) Changes in stable isotopic signatures of soil nitrogen and carbon during 40 years of forest development. Oecologia 148:325–333. https://doi.org/10.1007/s00442-006-0366-7

    CAS  Article  Google Scholar 

  10. Boeckx P, Paulino L, Oyarzún C, van Cleemput O, Codoy R (2005) Soil δ15N patterns in old-growth forests of southern Chile as integrator for N-Cycling. Isot Environ Health Stud 41:249–259. https://doi.org/10.1080/10256010500230171

    CAS  Article  Google Scholar 

  11. Boddey RM, Peoples MB, Palmer B, Dart PJ (2000) Use of the 15N natural abundance technique to quantify biological nitrogen fixation by woody perennials. Nutr Cycl Agroecosyst 57:235–270. https://doi.org/10.1023/A:1009890514844

    Article  Google Scholar 

  12. Bouwman AF, Beusen AHW, Griffioen J, Van Groenien JW, Hefting MM, Oenema O, Van Puijenbroek PJTM, Seitzinger S, Slomp CP, Stehfest E (2013a) Global trends and uncertainties in terrestrial denitrification and N2O emissions. Philos Trans R Soc B-Biol Sci 368:20130112. https://doi.org/10.1098/rstb.2013.0112

    CAS  Article  Google Scholar 

  13. Bouwman L, Goldewijk KK, Van Der Hoek KW, Beusen AHW, Van Vuuren DP, Willems J, Rufino MC, Stehfest E (2013b) Exploring global changes in nitrogen and phosphorus cycles in agriculture induced by livestock production over the 1900–2050 period. Proc Natl Acad Sci U S A 110:20882–20887. https://doi.org/10.1073/pnas.1012878108

    CAS  Article  Google Scholar 

  14. Brookshire ENJ, Hedin LO, Newbold JD, Sigman DM, Jackson JK (2012) Sustained losses of bioavailable nitrogen from montane tropical forests. Nat Geosci 5:123–126. https://doi.org/10.1038/NGEO1372

    CAS  Article  Google Scholar 

  15. Callesen I, Nilsson LO, Schmidt IK, Vesterdal L, Ambus P, Christiansen JR, Hogberg P, Gundersen P (2013) The natural abundance of 15N in litter and soil profiles under six temperate tree species: N cycling depends on tree species traits and site fertility. Plant Soil 368:375–392. https://doi.org/10.1007/s11104-012-1515-x

    CAS  Article  Google Scholar 

  16. Cheng SL, Fang HJ, Yu GR, Zhu TH, Zheng JJ (2010) Foliar and soil 15N natural abundances provide field evidence on nitrogen dynamics in temperate and boreal forest ecosystems. Plant Soil 337:285–297. https://doi.org/10.1007/s11104-010-0524-x

    CAS  Article  Google Scholar 

  17. Cheng W, Chan Q, Xu Y, Han X, Li L (2009) Climate and ecosystem 15N natural abundance along a transect of Inner Mongolian grasslands: contrasting regional patterns and global patterns. Glob Biogeochem Cycles 23:GB2005. https://doi.org/10.1029/2008GB003315

    CAS  Article  Google Scholar 

  18. Chodak M, Klimek B, Niklińska M (2016) Composition and activity of soil microbial communities in different types of temperate forests. Biol Fertil Soils 52:1093–1104. https://doi.org/10.1007/s00374-016-1144-2

    CAS  Article  Google Scholar 

  19. Choi WJ, Chang SX, Curran MP, Ro HM, Kamaluddin M, Zwiazek JJ (2005) Foliar δ13C and δ15N response of lodgepole pine and Douglas-fir seedlings to soil compaction and forest floor removal. For Sci 51:546–555. https://doi.org/10.1093/forestscience/51.6.546

    Article  Google Scholar 

  20. Choi WJ, Chang SX, Bhatti JS (2007) Drainage affects tree growth and C and N dynamics in a minerotrophic peatland. Ecology 88:443–453. https://doi.org/10.1890/0012-9658(2007)88[443:DATGAC]2.0.CO;2

    Article  Google Scholar 

  21. Choi WJ, Kwak JH, Lim SS, Park HJ, Chang SX, Lee SM, Arshad MA, Yun SI, Kim HY (2017) Synthetic fertilizer and livestock manure differently affect δ15N in the agricultural landscape: a review. Agric Ecosyst Environ 237:1–15. https://doi.org/10.1016/j.agee.2016.12.020

    Article  Google Scholar 

  22. Choi WJ, Ro HM (2003) Differences in isotopic fractionation of nitrogen in water-saturated and unsaturated soils. Soil Biol Biochem 35:483–486. https://doi.org/10.1016/S0038-0717(02)00299-7

    CAS  Article  Google Scholar 

  23. Choi WJ, Ro HM, Hobbie EA (2003a) Patterns of natural 15N in soils and plants from chemically and organically fertilized uplands. Soil Biol Biochem 35:1493 − 1500. https://doi.org/10.1016/S0038-0717(03)00246-3

  24. Choi WJ, Ro HM, Lee SM (2003b) Natural 15N abundances of inorganic nitrogen in soil treated with fertilizer and compost under changing soil moisture regimes. Soil Biol Biochem 35:1289–1298. https://doi.org/10.1016/S0038-0717(03)00199-8

    CAS  Article  Google Scholar 

  25. Compton JE, Hooker TD, Perakis SS (2007) Ecosystem N distribution and δ15N during a century of forest regrowth after agricultural abandonment. Ecosystems 10:1197–1208. https://doi.org/10.1007/s10021-007-9087-y

    CAS  Article  Google Scholar 

  26. Conen F, Zimmermann M, Leifeld J, Seth B, Alewell C (2008) Relative stability of soil carbon revealed by shifts in δ15N and C:N ratio. Biogeosci 5:123–128. https://doi.org/10.5194/bg-5-123-2008

    CAS  Article  Google Scholar 

  27. Conrad KA, Dalal RC, Dalzell SA, Allen DE, Fujinuma R, Menzies NW (2018) Soil nitrogen status and turnover in subtropical leucaena-grass pastures as quantified by 15N natural abundance. Geoderma 313:126–134. https://doi.org/10.1016/j.geoderma.2017.10.029

    CAS  Article  Google Scholar 

  28. Craine JM, Brookshire ENJ, Cramer MD, Hasselquist NJ, Koba K, Marin-Spiotta E, Wang LX (2015a) Ecological interpretations of nitrogen isotope ratios of terrestrial plants and soils. Plant Soil 396:1–26. https://doi.org/10.1007/s11104-015-2542-1

    CAS  Article  Google Scholar 

  29. Craine JM, Elmore AJ, Wang LX, Augusto L, Baisden WT, Brookshire ENJ, Cramer MD, Hasselquist NJ, Hobbie EA, Kahmen A (2015b) Convergence of soil nitrogen isotopes across global climate gradients. Sci Rep 5:8280. https://doi.org/10.1038/srep08280

    CAS  Article  Google Scholar 

  30. Dawes MA, Hagedorn F, Handa IT, Streit K, Ekblad A, Rixen C, Korner C, Hattenschwiler S (2013) An alpine treeline in a carbon dioxide-rich world: synthesis of a nine-year free-air carbon dioxide enrichment study. Oecologia 171:623–637. https://doi.org/10.1007/s00442-012-2576-5

    Article  Google Scholar 

  31. Denk TRA, Mohn J, Decock C, Lewicka-Szczebak D, Harris E, Butterbach-Bahl K, Kiese R, Wolf B (2017) The nitrogen cycle: a review of isotope effects and isotope modeling approaches. Soil Biol Biochem 105:121–137. https://doi.org/10.1016/j.soilbio.2016.11.015

    CAS  Article  Google Scholar 

  32. De Vries W, Reinds GJ, Gundersen P, Sterba H (2006) The impact of nitrogen deposition on carbon sequestration in European forests and forest soils. Glob Chang Biol 12:1151–1173. https://doi.org/10.1111/j.1365-2486.2006.01151.x

    Article  Google Scholar 

  33. Delwiche CC, Steyn PL (1970) Nitrogen isotope fractionation in soils and microbial reactions. Environ Sci Technol 4:929–935. https://doi.org/10.1021/es60046a004

    CAS  Article  Google Scholar 

  34. Dentener F, Drevet J, Lamarque JF, Bey I, Eickhout B, Fiore AM, Hauglustaine D, Horowirz LW, Krol M, Kulshrestha UC (2006) Nitrogen and sulfur deposition on regional and global scales: a multimodel evaluation. Glob Biogeochem Cycles 20:GB4003. https://doi.org/10.1029/2005GB002672

    CAS  Article  Google Scholar 

  35. Díaz FP, Frugone M, Gutiérrez RA (2016) Nitrogen cycling in an extreme hyperarid environment inferred from δ15N analyses of plants, soils and herbivore diet. Sci Rep 6:22226. https://doi.org/10.1038/srep22226

    CAS  Article  Google Scholar 

  36. Dijkstra P, Menyailo OV, Doucett RR, Hart SC, Schwartz E, Hunate BA (2006) C and N availability affects the 15N natural abundance of the soil microbial biomass across a cattle manure gradient. Eur J Soil Sci 57:468–475. https://doi.org/10.1111/j.1365-2389.2006.00793.

  37. Du Y, Guo X, Zhou G, Zhou G, Cao GM, Li YK (2017) Effect of grazing intensity on soil and plant δ15N of an alpine meadow. Pol J Environ Stud 26:1071–1075. https://doi.org/10.15244/pjoes/67977

    Article  Google Scholar 

  38. Duce RA, LaRoche J, Altieri K, Arrigo KR, Baker AR, Capone DG, Cornell S, Dentener F, Galloway J, Ganeshram RS, Geider RJ, Jickells T, Kuypers MM, Langlois R, Liss PS, Liu SM, Middelburg JJ, Moore CM, Nickovic S, Oschlies A, Pedersen T, Prospero J, Schlitzer R, Seitzinger S, Sorensen LL, Uematsu M, Ulloa O, Voss M, Ward B, Zamora L (2008) Impacts of atmospheric anthropogenic nitrogen on the open ocean. Science 320:893–897. https://doi.org/10.1126/science.1150369

    CAS  Article  Google Scholar 

  39. Du E, de Vries W (2018) Nitrogen-induced new net primary production and carbon sequestration in global forests. Environ Pollut 242:1476−1487

  40. Eshetu Z (2004) Natural 15N abundance in soils under young-growth forests in Ethiopia. For Ecol Manag 187:139–147. https://doi.org/10.1016/S0378-1127(03)00315-3

    Article  Google Scholar 

  41. Eshetu Z, Högberg P (2000) Effects of land use on 15N natural abundance of soils in Ethiopian highlands. Plant Soil 222:109–117. https://doi.org/10.1023/A:1004777301260

    CAS  Article  Google Scholar 

  42. Fang H, Yu G, Cheng S, Zhu T, Zheng J, Mo J, Yan J, Luo Y (2011b) Nitrogen-15 signals of leaf-litter-soil continuum as a possible indicator of ecosystem nitrogen saturation by forest succession and N loads. Biogeochemistry 102:251–263. https://doi.org/10.1007/s10533-010-9438-1

    CAS  Article  Google Scholar 

  43. Fang Y, Yoh M, Koba K, Zhu W, Takebayashi Y, Xiao Y, Lei C, Mo J, Zhang W, Lu X (2011a) Nitrogen deposition and forest nitrogen cycling along an urban-rural transect in southern China. Glob Chang Biol 17:872–885. https://doi.org/10.1111/j.1365-2486.2010.02283.x

    Article  Google Scholar 

  44. FAOSTAT (Food and Agriculture Organization Corporate Statistical Database) (2020) FAO online database, available at: http://www.fao.org/faostat/en/#data/RL (last access: March 2020)

  45. Felix JD, Elliott EM, Gish TJ, McConnell LL, Shaw SL (2013) Characterizing the isotopic composition of atmospheric ammonia emission sources using passive samplers and a combined oxidation-bacterial denitrifier approach. Rapid Commun Mass Spectrom 27:2239–2246. https://doi.org/10.1002/rcm.6679

    CAS  Article  Google Scholar 

  46. Felix JD, Elliot EM, Shaw SL (2012) Nitrogen isotopic composition of coal-fired power plant NOx: influence of emission controls and implications for global emission inventories. Environ Sci Technol 46:3528–3535. https://doi.org/10.1021/es203355v

    CAS  Article  Google Scholar 

  47. Fisk M, Fahey TJ (1990) Nitrification potential in the organic horizons following clearfelling of northern hardwood forests. Soil Biol Biochem 22:277–279

    Article  Google Scholar 

  48. Flipse WJ Jr, Bonner FT (1985) Nitrogen-isotope ratios of nitrate in ground water under fertilized fields, Long Island, New York. Groundwater 23:59–67. https://doi.org/10.1111/j.1745-6584.1985.tb02780.x

    CAS  Article  Google Scholar 

  49. Fornara D, Olave R, Higgins A (2020) Evidence of low response of soil carbon stocks to grassland intensification. Agric Ecosyst Enviorn 287:106705. https://doi.org/10.1016/j.agee.2019.106705

    CAS  Article  Google Scholar 

  50. Fowler D, Coyle M, Skiba U, Sutton MA, Cape JN, Reis S, Sheppard LJ, Jenkins A, Grizzetti B, Galloway JN, Vitousek P, Leach A, Bouwman AF, Butterbach-Bal K, Dentener F, Stevenson D, Amann M, Voss M (2013) The global nitrogen cycle in the twenty-first century. Philos Trans R Soc B-Biol Sci 368:20130164. https://doi.org/10.1098/rstb.2013.0164

    CAS  Article  Google Scholar 

  51. Fu L, Xu Y, Xu ZH, Wu BF (2020) Tree water use efficiency and growth dynamics in response to climatic and environmental changes in a temperate forest in Beijing, China. Environ Int 134:105209. https://doi.org/10.1016/j.envint.2019.105209

    CAS  Article  Google Scholar 

  52. Fujiyoshi L, Sugimoto A, Yamashita Y, Li XY (2019) Influence of soil N availability on the difference between tree foliage and soil δ15N from comparison of Mongolia and northern Japan. Ecol Indic 101:1086–1093. https://doi.org/10.1016/j.ecolind.2018.09.055

    CAS  Article  Google Scholar 

  53. Gaebler OH, Vitti TG, Vukmirovich R (1966) Isotope effects in metabolism of 14N and 15N from unlabeled dietary proteins. Can J Biochem 44:1249–1257. https://doi.org/10.1139/o66-142

    CAS  Article  Google Scholar 

  54. Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai ZC, Freney JR, Martinelli LA, Seitzinger SP, Sutton MA (2008) Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320:889–892. https://doi.org/10.1126/science.1136674

    CAS  Article  Google Scholar 

  55. Ganzeveld LN, Lelieveld J, Dentener FJ, Krol MC, Bouwman AJ, Roelofs GJ (2002) Global soil-biogenic NOx emissions and the role of canopy processes. J Geophys Res Atmos 107:4298. https://doi.org/10.1029/2001JD001289

    Article  Google Scholar 

  56. Girona-García A, Badía-Villas D, Jiménez-Morillo N, de la Rosa JM, González-Pérez JA (2018) Soil C and N isotope composition after a centennial Scots pine afforestation in podzols of native European beech forests in NE-Spain. Catena 165:434–441. https://doi.org/10.1016/j.catena.2018.02.023

    CAS  Article  Google Scholar 

  57. Gormly JR, Spalding RF (1979) Sources and concentrations of nitrate-nitrogen in ground water of the Central Platte Region, Nebraska. Ground Water 17:291–301. https://doi.org/10.1111/j.1745-6584.1979.tb03323.x

    CAS  Article  Google Scholar 

  58. Guinto DF, Xu ZH, House APN, Saffigna PG (2000) Assessment of N2 fixation by understorey acacias in recurrently burnt eucalypt forests of subtropical Australia using 15N isotope dilution techniques. Can J For Res 30:112–121

    CAS  Article  Google Scholar 

  59. Gurmesa GA, Lu X, Gundersen P, Fang Y, Mao Q, Hao C, Mo J (2017) Nitrogen input 15N signatures are reflected in plant 15N natural abundances in subtropical forests in China. Biogeosci 14:2359–2370. https://doi.org/10.5194/bg-14-2359-2017

    CAS  Article  Google Scholar 

  60. Gurmesa GA, Lu X, Gundersen P, Mao Q, Fang Y, Mo J (2019) Species differences in nitrogen acquisition in humid subtropical forest inferred from 15N natural abundance and its response to tracer addition. Forests 10:991. https://doi.org/10.3390/f10110991

    Article  Google Scholar 

  61. Hobbie EA, Hobbie JE (2008) Natural abundance of 15N in nitrogen-limited forests and tundra can estimate nitrogen cycling through mycorrhizal fungi: a review. Ecosystmes 11:815–830. https://doi.org/10.1007/s10021-008-9159-7

    CAS  Article  Google Scholar 

  62. Hobbie EA, Ouimette AP (2009) Controls of nitrogen isotope patterns in soil profiles. Biogeochmistry 95:355–371. https://doi.org/10.1007/s10533-009-9328-6

    CAS  Article  Google Scholar 

  63. Hoering T (1957) The isotopic composition of the ammonia and the nitrate ion in rain. Geochim Cosmochim Acta 12:97–102. https://doi.org/10.1016/0016-7037(57)90021-2

    CAS  Article  Google Scholar 

  64. Hoering T, Ford HT (1960) The isotope effect in the fixation of nitrogen by Azotobacter. J Am Chem Soc 82:376–378. https://doi.org/10.1021/ja01487a031

    CAS  Article  Google Scholar 

  65. Howarth RW, Billen G, Swaney D, Townsend A, Jaworski N, Lajtha K, Downing JA, Elmgren R, Caraco N, Jordan T, Berendse F, Freney J, Kudeyarov V, Murdoch P, Zhu ZL (1996) Regional nitrogen budgets and riverine N & P fluxes for the drainages to the North Atlantic Ocean: natural and human influences. Biogeochemistry 35:75–139. https://doi.org/10.1007/BF02179825

    CAS  Article  Google Scholar 

  66. Hou E, Chen C, Wen D, Kuang Y, Sun F (2015) Plant and soil δ13C and δ15N are linked to community biomass, litter production, and litter turnover rate in mature subtropical forests. Plant Ecol 216:859–872. https://doi.org/10.1007/s11258-015-0473-9

    Article  Google Scholar 

  67. Högberg P (1997) Tansley review no. 95. 15N natural abundance in soil-plant systems. New Phytol 137:179–203. https://doi.org/10.1046/j.1469-8137.1997.00808.x

    Article  Google Scholar 

  68. Högberg P, Johannisson C (1993) 15N Abundance of forests is correlated with losses of nitrogen. Plant Soil 157:147–150. https://doi.org/10.1007/BF00038758

    Article  Google Scholar 

  69. Hyodo F, Kusaka S, Wardle DA, Nilsson MC (2013) Changes in stable nitrogen and carbon isotope ratios of plants and soil across a boreal forest fire chronosequence. Plant Soil 367:111–119. https://doi.org/10.1007/s11104-013-1667-3

    CAS  Article  Google Scholar 

  70. Ibell PT, Xu ZH, Blumfield TJ (2013a) The influence of weed control on foliar δ15N, δ13C and tree growth in an 8 year-old exotic pine plantation of subtropical Australia. Plant Soil 369:199–217. https://doi.org/10.1007/s11104-012-1554-3

    CAS  Article  Google Scholar 

  71. Ibell PI, Xu ZH, Blake T, Blumfield TJ (2013b) Effects of weed control and fertilization at early establishment on tree nitrogen and water use in an exotic F-1 hybrid pine of subtropical Australia. J Soils Sediments 13:1538–1552. https://doi.org/10.1007/s11368-013-0765-4

    CAS  Article  Google Scholar 

  72. Ingerson E (1953) Nonradiogenic isotopes in geology: a review. Geol Soc Am Bull 64:301–373

    CAS  Article  Google Scholar 

  73. Karl D, Letelier R, Tupas L, Dore J, Christian J, Hebel D (1997) The role of nitrogen fixation in biogeochemical cycling in the subtropical North Pacific Ocean. Nature 388:533–538. https://doi.org/10.1038/41474

    CAS  Article  Google Scholar 

  74. Kim YJ, Choi WJ, Lim SS, Kwak JH, Chang SX, Kim HY, Yoon KS, Ro HM (2008) Changes in nitrogen isotopic compositions during composting of cattle feedlot manure: effects of bedding material type. Bioresour Technol 99:5452–5458. https://doi.org/10.1016/j.biortech.2007.11.012

    CAS  Article  Google Scholar 

  75. Klaus VH, Hölzel N, Prati D, Schmitt B, Schoning I, Schrumpf M, Fischer M, Kleinebecker T (2013) Organic vs. conventional grassland management: do 15N and 13C isotopic signatures of hay and soil samples differ? PLoS One 8:e78134. https://doi.org/10.1371/journal.pone.0078134

    CAS  Article  Google Scholar 

  76. Klein T, Shpringer I, Fikler B, Elbaz G, Cohen S, Yakir D (2013) Relationships between stomatal regulation, water-use, and water-use efficiency of two coexisting key Mediterranean tree species. For Ecol Manag 302:34–42. https://doi.org/10.1016/.foreco.2013.03.044

    Article  Google Scholar 

  77. Koba K, Hirobe M, Koyama L, Kohzu A, Tokuchi N, Nadelhoffer KJ, Wada E, Takeda H (2003) Natural 15N abundance of plants and soil N in a temperate coniferous forest. Ecosystems 6:457–469. https://doi.org/10.1007/s10021-002-0132-6

    CAS  Article  Google Scholar 

  78. Koba K, Tokuchi N, Yoshioka T, Hobbie EA, Iwatsubo G (1998) Natural abundance of nitrogen-15 in a forest soil. Soil Sci Soc Am J 62:778–781. https://doi.org/10.2136/sssaj1998.03615995006200030034x

    CAS  Article  Google Scholar 

  79. Kolb KJ, Evans RD (2002) Implications of leaf nitrogen recycling on the nitrogen isotope composition of deciduous plant tissues. New Phytol 156:57–64. https://doi.org/10.1046/j.1469-8137.2002.00490.x

    Article  Google Scholar 

  80. Koopmans CJ, van Dam D, Tietema A, Verstraten JM (1997) Natural 15N abundance in two nitrogen saturated forest ecosystem. Oecologia 111:470–480. https://doi.org/10.1007/s004420050260

    CAS  Article  Google Scholar 

  81. Kreitler CW (1975) Determining the source of nitrate in ground water by nitrogen isotope studies. Report of Investigations No 83. Bureau of Economic Geology, University of Texas, Austin, Texas

  82. Kriszan M, Amelung W, Schellberg J, Gebbing T, Kuhbauch W (2009) Long-term changes of the δ15N natural abundance of plants and soil in a temperate grassland. Plant Soil 325:157–169. https://doi.org/10.1007/s11104-009-9965-5

    CAS  Article  Google Scholar 

  83. Kriszan M, Schellberg J, Amelung W, Gebbing T, Potsch EM, Kuhbauch W (2014) Revealing N management intensity on grassland farms based on natural δ15N abundance. Agric Ecosyst Environ 184:158–167. https://doi.org/10.1016/j.agee.2013.11.028

    CAS  Article  Google Scholar 

  84. Lee KS, Lee DS, Lim SS, Kwak JH, Jeon BJ, Lee SI, Lee SM, Choi WJ (2012) Nitrogen isotope ratios of dissolved organic nitrogen in wet precipitation in a metropolis surrounded by agricultural areas in southern Korea. Agric Ecosyst Environ 159:161–169. https://doi.org/10.1016/j.agee.2012.07.010

    CAS  Article  Google Scholar 

  85. Lemma B, Olsson M (2006) Soil δ15N and nutrients under exotic tree plantations in the southwestern Ethiopian highlands. For Ecol Manag 237:127–134. https://doi.org/10.1016/j.foreco.2006.09.038

    Article  Google Scholar 

  86. Levy H, Moxim WJ, Kasibhatla PS (1996) A global three-dimensional time-dependent lightning source of tropospheric NOx. J Geophys Res Atmos 101:22911–22922. https://doi.org/10.1029/96JD02341

    CAS  Article  Google Scholar 

  87. Lim SS, Kwak JH, Lee KS, Chang SX, Yoon KS, Kim HY, Choi WJ (2015) Soil and plant nitrogen pools in paddy and upland ecosystems have contrasting δ15N. Biol Fertil Soils 51:231−239. https://doi.org/10.1007/s00374-014-0967-y

  88. Liu J, You L, Amini M, Obersteiner M, Herrero M, Zehnder AJB, Yang H (2010) A high-resolution assessment on global nitrogen flows in cropland. Proc Natl Acad Sci USA 107:8035−8040. https://doi.org/10.1073/pnas.0913658107

  89. Lorenz K, Preston CM, Krumrei S, Feger KH (2004) Decomposition of needle/leaf litter from scots pine, black cherry, common oak and European beech at a conurbation forest site. Eur J For Res 123:177–188. https://doi.org/10.1007/s10342-004-0025-7

    Article  Google Scholar 

  90. Macko SA, Fogel ML, Hare PE, Hoering TC (1987) Isotopic fractionation of nitrogen and carbon in the synthesis of amino acids by microorganisms. Chem Geol 65:79–92. https://doi.org/10.1016/0168-9622(87)90064-9

    CAS  Article  Google Scholar 

  91. Marín-Spiotta E, Silver WL, Swanston CW, Ostertag R (2009) Soil organic matter dynamics during 80 years of reforestation of tropical pastures. Glob Chang Biol 15:1584–1597. https://doi.org/10.1111/j.1365-2486.2008.01805.x

    Article  Google Scholar 

  92. Mariotti A (1983) Atmospheric nitrogen is a reliable standard for natural δ15N abundance measurements. Nature 303:685 687. https://doi.org/10.1038/303685a0

  93. Markham JH (2009) Variation in moss-associated nitrogen fixation in boreal forest stands. Oecologia 161:353–359. https://doi.org/10.1007/s00442-009-1391-0

    Article  Google Scholar 

  94. Martinelli LA, Piccolo MC, Townsend AR, Vitousek PM, Cuevas E, McDowell W, Robertson GP, Santos OC, Treseder K (1999) Nitrogen stable isotopic composition of leaves and soil: tropical versus temperate forests. Biogeochemistry 46:45–65. https://doi.org/10.1023/A:1006100128782

    CAS  Article  Google Scholar 

  95. Marty C, Houle D, Courchesne F, Gagnon C (2019) Soil C:N ratio is the main driver of soil δ15N in cold and N-limited eastern Canadian forests. Catena 172:285–294. https://doi.org/10.1016/j.catena.2018.089.029

    CAS  Article  Google Scholar 

  96. Marty C, Houle D, Gagnon C, Duchesne L (2011) Isotopic compositions of S, N and C in soils and vegetation of three forest types in Quebec, Canada. Appl Geochem 26:2181–2190. https://doi.org/10.1016/j.apgeochem.2011.08.002

    CAS  Article  Google Scholar 

  97. Matsushima M, Chang SX (2007) Effects of understory competition, N fertilization, and litter layer removal on soil N cycling in a 13-year-old white spruce plantation infested with Canada bluejoint grass. Plant Soil 292:243–258. https://doi.org/10.1007/s11104-007-9220-x

    CAS  Article  Google Scholar 

  98. Matsushima M, Choi WJ, Chang SX (2012) White spruce foliar δ13C and δ15N indicate changed soil N availability by understory removal and N fertilization in a 13-year-old boreal plantation. Plant Soil 361:375–384. https://doi.org/10.1007/s11104-012-1254-z

    CAS  Article  Google Scholar 

  99. Menge DNL, Hedin LO (2009) Nitrogen fixation in different biogeochmical niches along a 120000-year chronosequence in New Zealand. Ecology 90:2190–2201. https://doi.org/10.1890/08-0877.1

    Article  Google Scholar 

  100. Moore H (1974) Isotopic measurements of atmospheric nitrogen compounds. Tellus 26:169−174. https://doi.org/10.3402/tellusa.v26i1-2.9767

  101. Mudge PL, Schipper LA, Baisden WT, Ghani A, Lewis RW (2014) Changes in soil C, N and δ15N along three forest-pasture chronosequences in New Zealand. Soil Res 52:27–37. https://doi.org/10.1071/SR13183

    CAS  Article  Google Scholar 

  102. Mudge PL, Schipper LA, Ghani A, Upsdell M, Baisden WT (2013) Changes in natural 15N abundance in pasoral soils receiving differing amounts of superphosphate fertilizer and irrigation for 50 years. Soil Sci Soc Am J 77:830–841. https://doi.org/10.2136/sssaj2012.0333

    CAS  Article  Google Scholar 

  103. Ning QS, Gu Q, Shen JP, Lv XT, Yang JJ, Zhang XM, He JZ, Huang JH, Wang H, Xu ZH, Han XG (2015) Effects of nitrogen deposition rates and frequencies on the abundance of soil nitrogen-related functional genes in temperate grassland of northern China. J Soils Sediments 15:694–704. https://doi.org/10.1007/s11368-015-1061-2

    CAS  Article  Google Scholar 

  104. Pardo LH, Hemond HF, Montoya JP, Fahey TJ, Siccama TG (2002) Response of the natural abundance of 15N in forest soils and foliage to high nitrate loss following clear-cutting. Can J For Res 32:1126–1136. https://doi.org/10.1139/X02-041

    CAS  Article  Google Scholar 

  105. Pardo LH, Hemond HF, Montoya JP, Pett-Ridge J (2007) Natural abundance 15N in soil and litter across a nitrate-output gradient in New Hampshire. For Ecol Manag 251:217–230. https://doi.org/10.1016/j.foreco.2007.06.047

    Article  Google Scholar 

  106. Pardo LH, Templer PH, Goodale CL, Duke S, Groffman PM, Adams MB, Boeckx P, Boggs J, Campbell J, Colman B, Compton J, Emmett B, Gundersen P, Kjonaas J, Lovett G, Mack M, Magill A, Mbila M, Mitchell MJ, McGee G, McNulty S, Nadelhoffer K, Ollinger S, Ross D, Rueth H, Rustad L, Schaberg P, Schiff S, Schleppi P, Spoelstra J, Wessel W (2006) Regional assessment of N saturation using foliar and root δ15N. Biogeochemistry 80:143–171. https://doi.org/10.1007/s10533-006-9015-9

    Article  Google Scholar 

  107. Park HJ, Lim SS, Kwak JH, Yang Park HJ, Lim SS, Kwak JH, Yang HI, Lee KS, Lee YH, Kim HY, Choi WJ (2018) Elevated CO2 concentration affected pine and oak litter chemistry and the respiration and microbial biomass of soils amended with these litters. Biol Fertil Soils 54:583–594. https://doi.org/10.1007/s00374-018-1282-9

    CAS  Article  Google Scholar 

  108. Park HJ, Lim SS, Yang HI, Lee KS, Park SI, Kwak JH, Kim HY, Oh SW, Choi WJ (2019) Co-elevated CO2 and temperature and changed water availability do not change litter quantity and quality of pine and oak. Agric For Meteorol 280:107795. https://doi.org/10.1016/j.agrformet.2019.107795

    Article  Google Scholar 

  109. Peri PL, Ladd B, Pepper DA, Bonser SP, Laffan SW, Amelung W (2012) Carbon (δ13C) and nitrogen (δ15N) stable isotope composition in plant and soil in Southern Patagonia’s native forests. Glob Chang Biol 18:311–321. https://doi.org/10.1111/j.1365-2486.2011.02494.x

    Article  Google Scholar 

  110. Piccolo MC, Neill C, Cerri CC (1994) Natural abundance of 15N in soils along forest-to-pasture chronosequences in the western Brazilian Amazon Basin. Oecologia 99:112–117. https://doi.org/10.1007/BF00317090

    Article  Google Scholar 

  111. Pilegaard K (2013) Processes regulating nitric oxide emissions from soils. Philos Trans R Soc B-Biol Sci 368:20130126. https://doi.org/10.1098/rstb.2013.0126

    CAS  Article  Google Scholar 

  112. Pörtl K, Zechmeister-Boltenstern, Wanek W (2007) Natural 15N abundance of soil N pools and N2O reflect the dynamics of forest soils. Plant Soil 295:79–94. https://doi.org/10.1007/s11104-007-9264-y

    CAS  Article  Google Scholar 

  113. Qiao N, Xu X, Cao G, Ouyang H, Kuzyakov Y (2015) Land use change decreases soil carbon stocks in Tibetan grasslands. Plant Soil 395:231–241. https://doi.org/10.1007/s11104-015-2556-8

    CAS  Article  Google Scholar 

  114. Qiu L, Wei X, Ma T, Wei Y, Horton R, Zhang X, Cheng J (2015) Effects of land-use change on soil organic carbon and nitrogen in density fractions and soil δ13C and δ15N in semiarid grasslands. Plant Soil 390:419–430. https://doi.org/10.1007/s11104-015-2435-3

    CAS  Article  Google Scholar 

  115. Reverchon F, Abdullah KM, Bai SH, Villafan E, Blumfield TJ, Patel B, Xu Z (2020) Biological nitrogen fixation by two Acacia species and associated root-nodule bacteria in a suburban Australian forest subjected to prescribed burning. J Soils Sediments 20:122–132. https://doi.org/10.1007/s11368-019-02446-9

    CAS  Article  Google Scholar 

  116. Reynolds-Henne CE, Siegwolf RTW, Treydte KS, Esper J, Henne S, Saurer M (2007) Temporal stability of climate-isotope relationships in tree rings of oak and pine (Ticino, Switzerland). Glob Biogeochem Cycles 21:GB4009. https://doi.org/10.1029/2007GB002945

    CAS  Article  Google Scholar 

  117. Rice CW, Tiedje JM (1989) Regulation of nitrate assimilation by ammonium in soils and in isolated soil microorganisms. Soil Biol Biochem 21:597–602. https://doi.org/10.1016/0038-0717(89)90135-1

    CAS  Article  Google Scholar 

  118. Robinson D (2001) δ15N as an integrator of the nitrogen cycle. Trends Ecol Evol 16:153–162. https://doi.org/10.1016/S0169-5347(00)02098-X

    CAS  Article  Google Scholar 

  119. Rui YC, Wang SP, Xu ZH, Wang YF, Chen CR, Zhou XQ, Lu SB, HuYG (2011) Warming and grazing affect soil labile carbon and nitrogen pools in an alpine meadow ecosystem of the Qinghai-Tibet Plateau in China. J Soils Sediments 11:903–914. https://doi.org/10.1007/s11368-011-0388-6

    CAS  Article  Google Scholar 

  120. Sah SP (2005) 15N natural abundances in two podsol soils of two spruce forests differing in their atmospheric N deposition conditions. Plant Soil Environ 51:416–422. https://doi.org/10.17221/3606-PSE

  121. Sah SP, Ilvesniemi H (2006) Effects of clear-cutting and soil preparation on natural 15N abundance in the soil and needles of two boreal conifer tree species. Isot Environ Health Stud 42:367–377. https://doi.org/10.1080/10256010600991094

    CAS  Article  Google Scholar 

  122. Sah SP, Rita H, Ilvesniemi H (2006) 15N natural abundance of foliage and soil across boreal forests of Finland. Biogeochemistry 80:277–288. https://doi.org/10.1007/s10533-006-9023-9

    Article  Google Scholar 

  123. Schwede DB, Simpson D, Tan J, Fu J, Dentener F, Du E, deVries W (2018) Spatial variation of modelled total, dry and wet nitrogen deposition to forests at global scale. Environ Pollut 243:1287–1301. https://doi.org/10.1016/j.envpol2018.09.084

    CAS  Article  Google Scholar 

  124. Scott EE, Perakis SS, Hibbs DE (2008) δ15N patterns of Douglas-fir and red alder riparian forests in the Oregon coast range. For Sci 54:140–147

    Google Scholar 

  125. Sheng W, Yu G, Fang H, Liu Y, Wang Q, Chen Z, Zhang L (2014) Regional patterns of 15N natural abundance in forest ecosystems along a large transect in eastern China. Sci Rep 4:4249. https://doi.org/10.1038/srep04249

    CAS  Article  Google Scholar 

  126. Staelens J, Rütting T, Huygens D, De Schrijver A, Muller C, Verheyen K, Boeckx P (2012) In situ gross nitrogen transformations differ between temperate deciduous and coniferous forest soils. Biogeochemistry 108:259–277. https://doi.org/10.1007/s10533-011-9598-7

    CAS  Article  Google Scholar 

  127. Stark JM, Hart SC (1997) High rates of nitrification and nitrate turnover in undisturbed coniferous forests. Nature 358:61–64. https://doi.org/10.1038/385061a0

    Article  Google Scholar 

  128. Stephan K, Kavanagh KL, Koyama A (2015) Comparing the influence of wildfire and prescribed burns on watershed nitrogen biogeochemistry using 15N natural abundance in terrestrial and aquatic ecosystem components. PLoS One 10:e0119560. https://doi.org/10.1371/journal.pone.0119560

    CAS  Article  Google Scholar 

  129. Stevenson BA, Parfitt RL, Schipper LA, Baisden WT, Mudge P (2010) Relationship between soil δ15N, C/N and N losses across land uses in New Zealand. Agric Ecosyst Environ 139:736–741. https://doi.org/10.1016/j.agee.2010.10.020

    CAS  Article  Google Scholar 

  130. Sutton MA, Reis S, Riddick SN, Dragosits U, Nemitz E, Theobald MR, Tang YS, Braban CF, Vieno M, Dore AJ, Mitchell RF, Wanless S, Daunt F, Fowler D, Blackall TD, Milford C, Flechard CR, Loubet B, Massad R, Cellier P, Personne E, Coheur PF, Clarisse L, Van Damme M, Ngadi Y, Clerbaux C, Skjoth CA, Geels C, Hertel O, Kruit RJW, Pinder RW, Bash JO, Walker JT, Simpson D, Horvath L, Misselrook TH, Bleeker A, Dentener F, de Vries W (2013) Towards a climate-dependent paradigm of ammonia emission and deposition. Philos Trans R Soc B-Biol Sci 368:20130166. https://doi.org/10.1098/rstb.2013.0166

    CAS  Article  Google Scholar 

  131. Sun F, Kuang Y, Wen D, Xu Z, Li J, Zuo W, Hou E (2010) Long-term tree growth rate, water use efficiency, and tree ring nitrogen isotope composition of Pinus massoniana L. in reponse to global climate change and local nitrogen deposition in Southern China. J Soils Sediments 10:1453–1465. https://doi.org/10.1007/s11368-010-0249-8

    CAS  Article  Google Scholar 

  132. Tahmasbian I, Xu Z, Nguyen TTN, Che RX, Omidvar N, Lambert G, Bai SH (2019) Short-term carbon and nitrogen dynamics in soil, litterfall and canopy of a suburban native forest subjected to prescribed burning in subtropical Australia. J Soils Sediments 19:3969–3981. https://doi.org/10.1007/s11368-019-02430-3

    CAS  Article  Google Scholar 

  133. Takebayashi Y, Koba K, Sasaki Y, Fang YT, Yoh M (2010) The natural abundance of 15N in plant and soil-available N indicates a shift of main plant N resources to NO3- from NH4+ along the N leaching gradient. Rapid Commun Mass Spectrom 24:1001–1008. https://doi.org/10.1002/rcm.4469

    CAS  Article  Google Scholar 

  134. Templer PH, Arthur MA, Lovett GM, Weathers KC (2007) Plant and soil natural abundance δ15N: indicators of relative rates of nitrogen cycling in temperate forest ecosystems. Oecologia 153:399–406. https://doi.org/10.1007/s00442-007-0746-7

    Article  Google Scholar 

  135. Templer PH, Mack MC, Chapin FS, Christenson LM, Compton JE, Crook HD, Currie WS, Curtis CJ, Dail DB, D'Antonio CM, Emmett BA, Epstein HE, Goodale CL, Gundersen P, Hobie SE, Holland K, Hooper DU, Hungate BA, Lamontagne S, Nadelhoffer KJ, Osenberg CW, Perakis SS, Schleppi P, Schimel J, Schmidt IK, Sommerkorn M, Spoelstra J, Tietema A, Wessel WW, Zak DR (2012) Sinks for nitrogen inputs in terrestrial ecosystems: a meta-analysis of 15N tracer field studies. Ecology 93:1816–1829. https://doi.org/10.1890/11-1146.1

    CAS  Article  Google Scholar 

  136. Tian D, Du EZ, Jiang L, Ma SH, Zeng WJ, Zou AL, Feng CY, Xu LC, Xing AJ, Wang W, Zheng CY, Ji CJ, Shen HH, Fang JY (2018) Responses of forest ecosystems to increasing N deposition in China: a critical review. Environ Pollut 243:75–86. https://doi.org/10.1016/j.envpol2018.08.010

    CAS  Article  Google Scholar 

  137. Tie XX, Zhang RY, Brasseur G, Lei WF (2002) Global NOx production by lightning. J Atmos Chem 43:61–74. https://doi.org/10.1023/A:1016145719608

    CAS  Article  Google Scholar 

  138. Trudell SA, Rygiewicz PT, Edmonds RL (2004) Patterns of nitrogen and carbon stable isotope ratios in macrofungi, plants and soils in two old-growth conifer forests. New Phytol 164:317–335. https://doi.org/10.1111/j.1469-8137.2004.01162.x

    Article  Google Scholar 

  139. Unkovich M (2013) Isotope discrimination provides new insight into biological nitrogen fixation. New Phytol 198:643–646. https://doi.org/10.1111/nph.12227

    CAS  Article  Google Scholar 

  140. Unkovich M, Pate JS (2001) Assessing N2 fixation in annual legumes using 15N natural abundance. In: Unkovich M, Pate J, McNeill A, Gibbs DJ (eds) Stable isotope techniques in the study of biological processes and functioning of ecosystems. Current Plant Science and Biotechnology in Agriculture, vol 40. Springer, Dordrecht.

  141. Van der Stelt B, Temminghoff EJM, Van Vliet PCJ, Van Riemsdijk WH (2007) Volatilization of ammonia from manure as affected by manure additives, temperature and mixing. Bioresour Technol 98:3449–3455. https://doi.org/10.1016/j.biortech.2006.11.004

    CAS  Article  Google Scholar 

  142. van Vuuren DP, Bouwman LF, Smith SJ, Dentener F (2011) Global projections for anthropogenic reactive nitrogen emissions to the atmosphere: an assessment of scenarios in the scientific literature. Curr Opin Environ Sustain 3:359–369. https://doi.org/10.1016/j.cosust.2011.08.014

    Article  Google Scholar 

  143. Verchot LV, Holmes Z, Mulon L, Groffman PM, Lovett GM (2001) Gross vs net rates of N mineralization and nitrification as indicators of function differences between forest types. Soil Biol Biochem 33:1889–1901. https://doi.org/10.1016/S0038-0717(01)00095-5

    CAS  Article  Google Scholar 

  144. Vervaet H, Boeckx P, Unamuno V, Van Cleemput O, Hofman G (2002) Can δ15N profiles in forest soils predict NO3- loss and net N mineralization rates? Biol Fertil Soils 36:143–150. https://doi.org/10.1007/s00374-002-0522-0

    CAS  Article  Google Scholar 

  145. Vitousek PM, Menge DNL, Reed SC, Cleveland CC (2013) Biological nitrogen fixation: rates, patterns, and ecological controls in terrestrial ecosystems. Philos Trans R Soc B-Biol Sci 368:20130119. https://doi.org/10.1098/rstb.2013.0119

    CAS  Article  Google Scholar 

  146. Wang A, Fang Y, Chen D, Phillips O, Koba K, Zhu W, Zhu J (2018) High nitrogen isotope fractionation of nitrate during denitrification in four forest soils and its implications for denitrification rate estimates. Sci Total Environ 633:1078–1088. https://doi.org/10.1016/k.scitotenv.2018.03.261

    CAS  Article  Google Scholar 

  147. Wang C, Yang J (2007) Rhizospheric and heterotrophic components of soil respiration in six Chinese temperate forests. Glob Chang Biol 13:123–131. https://doi.org/10.1111/j.1365-2486.2006.01291.x

    Article  Google Scholar 

  148. Wang DJ, Xu ZH, Blumfield TJ, Zalucki J (2020) The potential of using N-15 natural abundance in changing ammonium-N and nitrate-N pools for studying in situ soil N transformations. J Soils Sediments 20:1323–1331. https://doi.org/10.1007/s11368-019-02478-1

    CAS  Article  Google Scholar 

  149. Wang YZ, Xu ZH, Zheng JQ, Abdullah KM, Zhou QX (2015) δ15N of soil nitrogen pools and their dynamics under decomposing leaf litters in a suburban native forest subject to repeated prescribed burning in southeast Queensland, Australia. J Soils Sediments 15:1063–1074. https://doi.org/10.1007/s11368-015-1117-3

    CAS  Article  Google Scholar 

  150. Watzka M, Buchgraber K, Wanek W (2006) Natural 15N abundance of plants and soils under different management practices in a montane grassland. Soil Biol Biochem 38:1564–1576. https://doi.org/10.1016/j.soilbio.2005.11.007

    CAS  Article  Google Scholar 

  151. Weintraub S, Cole RJ, Schmitt CG, All JD (2016) Climatic controls on the isotopic composition and availability of soil nitrogen across mountainous tropical forest. Ecosphere 7:e01412. https://doi.org/10.1002/ecs2.1412

    Article  Google Scholar 

  152. Xu R, Tian H, Pan S, Dangal SRS, Chen J, Chang J, Lu Y, Skiba UM, Tubiello FN, Zhang B (2019) Increased nitrogen enrichment and shifted patters in the world’s grassland: 1860–2016. Earth Syst Sci Data 11:175–187. https://doi.org/10.5194/sssd-11-175-2019

    Article  Google Scholar 

  153. Xu Y, He J, Cheng W, Xing X, Li L (2010) Natural 15N abundance in soils and plants in relation to N cycling in a rangeland in Inner Mongolia. J Plant Ecol 3:201–207. https://doi.org/10.1093/jpe/rtq023

    Article  Google Scholar 

  154. Xu ZH, Chen CR, He JZ, Liu JX (2009) Trends and challenges in soil research 2009: linking global climate change to local long-term forest productivity. J Soils Sediments 9:83–88. https://doi.org/10.1007/s11368-009-0060-6

    Article  Google Scholar 

  155. Xu ZH, Myers RJK, Saffigna PG, Chapman AL (1993a) Nitrogen cycling in leucaena (Leucaena leucocephala) alley cropping in seminar tropics: 2. Response of maize growth to addition of nitrogen fertilizer and plant residues. Plant Soil 148:73–82

    CAS  Article  Google Scholar 

  156. Xu ZH, Saffigna PG, Myers RJK, Chapman AL (1993b) Nitrogen cycling in leucaena (Leucaena leucocephala) alley cropping in seminar tropics: 1. Mineralization of nitrogen from leucaena residues. Plant Soil 148:63–72

    CAS  Article  Google Scholar 

  157. Yu Q, Duan L, Yu L, Chen X, Si GY, Ke PP, Ye ZX, Mulder J (2018) Threshold and multiple indicators for nitrogen saturation in subtropical forests. Environ Pollut 241:664–673. https://doi.org/10.1016/j.envpol.2018.06.001

    CAS  Article  Google Scholar 

  158. Zhang YL, Zhang MY, Tang L, Chen H, Hu T, Blumfield T, Boyd S, Nouansyvong M, Xu ZH (2018) Long-term harvest residue retention could decrease soil bacterial diversities probably due to favouring oligotrophic lineages. Microb Ecol 76:771–781. https://doi.org/10.1007/s00248-018-1162-8

    CAS  Article  Google Scholar 

  159. Zhou L, Song MH, Wang SQ, Fan JW, Liu JY, Zhong HP, Yu GR, Gao LP, Hu ZM, Chen B, Wu WX, Song T (2014) Patterns of soil 15N and total N and their relationships with environmental factors on the Qinghai-Tibetan plateau. Pedosphere 24:232−242. https://doi.org/10.1016/S1002-0160(14)60009-6

Download references

Funding

This work was carried out with the support of “Cooperative Research Program for Agriculture Science and Technology Development (Project No. PJ015010022020)”, Rural Development Administration, Republic of Korea.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Woo-Jung Choi or Sang-Sun Lim.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible editor: Yan He

Electronic supplementary material

ESM 1

(DOCX 73 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Choi, WJ., Kwak, JH., Park, HJ. et al. Land-use type, and land management and disturbance affect soil δ15N: a review. J Soils Sediments 20, 3283–3299 (2020). https://doi.org/10.1007/s11368-020-02708-x

Download citation

Keywords

  • Cropland soil
  • Forest soil
  • Grassland soil
  • Land-use change
  • Nitrogen isotope