Ajmone-Marsan F, Biasioli M (2010) Trace elements in soils of urban areas. Water Air Soil Pollut 213:121–143. https://doi.org/10.1007/s11270-010-0372-6
CAS
Article
Google Scholar
Alekseenko VA, Maximovich NG, Alekseenko AV (2017) Geochemical barriers for soil protection in mining areas. In: Bech et al (eds) Assessment, restoration and reclamation of mining influenced soil. Academic Press, pp 255–274
AMAP (1998) AMAP assessment report: Arctic pollution issues. Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway, pp. xii + 859 pp
Ananyeva ND, Susyan EA, Chernova OV, Wirth S (2008) Microbial respiration activities of soils from different climatic regions of European Russia. Eur J Soil Biol 44:147–157. https://doi.org/10.1016/j.ejsobi.2007.05.002
CAS
Article
Google Scholar
Anderson JPE, Domsch KH (1978) A physiological method for the quantitative measurement of microbial biomass in soils. Soil Biol Biochem 10(3):215–221. https://doi.org/10.1016/0038-0717(78)90099-8
CAS
Article
Google Scholar
Antoniadis V, Levizou E, Shaheen SM, Ok YS, Sebastian A, Baum C, Prasad MNV, Wenzel WW, Rinklebe J (2017) Trace elements in the soilplant interface: Phytoavailability, translocation, and phytoremediation–A review. Earth-Science Reviews 171:(621–645). https://doi.org/10.1016/j.earscirev.2017.06.005
Archegova IB, Likhanova IA (2012) Biological recultivation problem and its solution in the European northeast, the Komi Republic as an example. Izvestiya Komi nauchnogo tsentra UrO RAN 1(9):29–34 (In Russian)
Google Scholar
Böhm W (2012) Methods of studying root systems (Vol. 33). Springer Science & Business Media
Carter MR, Gregorich EG (2007) Soil sampling and methods of analysis, 2nd ed. CRC Press
Creamer RE, Schulte RPO, Stone D et al (2014) Measuring basal soil respiration across Europe: Do incubation temperature and incubation period matter? Ecol Indic 36:409–418. https://doi.org/10.1016/j.ecolind.2013.08.015
Article
Google Scholar
Gerasimova MI, Gubin SV, Shoba SA (1992) Micromorphology of soils of the natural zones of the Soviet Union. Pushchino (Mikromorfologiya pochv prirodnikh zon SSSR Informatsionno-spravochniye materialy), 215p
Goryachkin SV, Mergelov NS, Targulian VO (2019) Extreme pedology: elements of theory and methodological approaches. Eur Soil Sci 52(1):1–13
Article
Google Scholar
Grimes ST, Brock F, Rickard D, Davies KL, Edwards D, Briggs DE, Parkes RJ (2001) Understanding fossilization: experimental pyritization of plants. Geology 29(2):123–126. https://doi.org/10.1130/0091-7613(2001)029<0123:UFEPOP>2.0.CO;2
CAS
Article
Google Scholar
Gustafsson JP, Pechová P, Berggren D (2003) Modeling metal binding to soils: the role of natural organic matter. Environ Sci Technol 37(12):2767–2774. https://doi.org/10.1021/es026249t
CAS
Article
Google Scholar
Horváth B, Opara-Nadi O, Beese F (2005) A simple method for measuring the carbonate content of soils. Soil Sci Soc Am J 69(4):1066–1068. https://doi.org/10.2136/sssaj2004.0010
CAS
Article
Google Scholar
Huot H, Simonnot MO, Morel JL (2015) Pedogenetic trends in soils formed in technogenic parent materials. Soil Sci 180(4-5):182–192. https://doi.org/10.1097/SS.0000000000000135
Ivanova LA (2011) Method for biologically recultivating industrial wastelands. Int. Appl. WO/2011/084079, Int.Cl.6 A 01 B 79/02, A 01 G 1/00, 31/00. № PCT/RU2010/000001. Applied: 11.01.10. Published: 14.07.11
Ivanova LA, Kremenetskaya MV, Gorbacheva TT, Inozemtseva ES, Korytnaya OP (2013) Method of creation of vegetative cover in recultivation of disturbed soils. Patent RF, № 2484613. 20.06.2013. Bulletin № 17
Ivashchenko KV, Ananyeva ND, Vasenev VI, Kudeyarov VN, Valentini R (2014) Biomass and respiration activity of soil microorganisms in anthropogenically transformed ecosystems (Moscow region). Eurasian Soil Sci 47:892–903. https://doi.org/10.1134/S1064229314090051
Kadulin MS, Koptsik GN (2019) Carbon dioxide emission by soils as a criterion for remediation effectiveness of industrial barrens near copper-nickel plants in the Kola Subarctic. Russ J Ecol 50(4):535–542. https://doi.org/10.1134/S1067413619060079
CAS
Article
Google Scholar
Kalabin GV, Evdokimova GA, Gornyy VI (2010) Assessment of dynamics of vegetation cover of disturbed territories during the decrease of Severonikel combine influence on environment. Gornyi Zhurnal 11:74–77 (in Russian)
Google Scholar
Karaca O, Cameselle C, Reddy KR (2018) Mine tailing disposal sites: contamination problems, remedial options and phytocaps for sustainable remediation. Rev Environ Sci Biotechnol 17(1):205–228. https://doi.org/10.1007/s11157-017-9453-y
CAS
Article
Google Scholar
Karelin DV, Goryachkin SV, Zamolodchikov DG, Dolgikh AV, Zazovskaya EP, Shishkov VA, Kraev GN (2017) Human footprints on greenhouse gas fluxes in cryogenic ecosystems. Dokl Earth Sci 477:1467–1469. https://doi.org/10.1134/S1028334X17120133
CAS
Article
Google Scholar
Karelin DV, Zazovskaya EP, Shishkov VA, Dolgikh AV, Sirin AA, Suvorov GG, Azovsky AI, Osokin NI (2019) Monitoring of CO2 fluxes on Svalbard: land use alters the gas exchange in the arctic tundra. Izvestiya Rossiiskoi Akademii Nauk. Seriya Geograficheskaya 5:55–66. https://doi.org/10.31857/S2587-55662019556-66 (in Russian)
Article
Google Scholar
Kashulina GM (2017) Extreme pollution of soils by emissions of the copper–nickel industrial complex in the Kola Peninsula. Eur Soil Sci 50(7):837–849. https://doi.org/10.1134/S1064229317070031
CAS
Article
Google Scholar
Kashulina GM, Pereverzev VN, Litvinova TI (2010) Transformation of the soil organic matter under the extreme pollution by emissions of the Severonikel smelter. Eur Soil Sci 43(10):1174–1183. https://doi.org/10.1134/s1064229310100108
Article
Google Scholar
Kashulina GM, Kubrak AN, Korobeinikova NM (2015) Soil acidity status in the vicinity of the Severonikel copper-nickel industrial complex, Kola peninsula. Eur Soil Sci 48(4):432–444
CAS
Article
Google Scholar
Kleber M, Eusterhues K, Keiluweit M, Mikutta C, Mikutta R, Nico PS (2015) Mineral–organic associations: formation, properties, and relevance in soil environments. In: Advances in agronomy, vol. 130. Academic Press, pp 1-140
Koptsik GN (2014) Modern approaches to remediation of heavy metal polluted soils: a review. Eur Soil Sci 47(7):707–722. https://doi.org/10.1134/S1064229314070072
CAS
Article
Google Scholar
Koptsik GN, Koptsik SV, Smirnova IE (2016) Alternative technologies for remediation of technogenic barrens in the Kola Subarctic. Eur Soil Sci 49(11):1294–1309. https://doi.org/10.1134/S1064229316090088
CAS
Article
Google Scholar
Koptsik S, Koptsik G, Korotkov V, Spiers G, Beckett P (2018) Successes in application of biotechnologies to mine land remediation in the Russian Sub-Arctic. In: Prasad et al. (eds.) Bio-Geotechnologies for Mine Site Rehabilitation 547–570. https://doi.org/10.1016/b978-0-12-812986-9.00030-0
Korotkov VN, Koptsik GN, Smirnova IE, Koptsik SV (2019) Restoration of vegetation on mine lands near Monchegorsk (Murmansk region, Russia). Russ J Ecosyst Ecol 4(1):1–18
Google Scholar
Kozlov M, Zvereva E (2007) Industrial barrens: extreme habitats created by non-ferrous metallurgy. Rev Environ Sci Biotechnol 6:231–259. https://doi.org/10.1007/s11157-006-9117-9
CAS
Article
Google Scholar
Kremenetskaya I, Tereshchenko S, Alekseeva S, Mosendz I, Slukovskaya M, Ivanova L, Mikhailova I (2019) Vermiculite-lizardite ameliorants from mining waste. IOP Conference Series: Earth and Environmental Science 368(1):012027. IOP Publishing. https://doi.org/10.1088/1755-1315/368/1/012027
Lyanguzova IV, Goldvirt DK, Fadeeva IK (2016) Spatiotemporal dynamics of the pollution of Al–Fe-humus podzols in the impact zone of a nonferrous metallurgical plant. Eur Soil Sci 49(10):1189–1203. https://doi.org/10.1134/s1064229316100094
CAS
Article
Google Scholar
Lyanguzova I, Yarmishko V, Gorshkov V, Stavrova N, Bakkal I (2018) Impact of heavy metals on forest ecosystems of the European North of Russia. Heavy Metals:92–114. https://doi.org/10.5772/intechopen.73323
Mahar A, Wang P, Ali A, Awasthi MK, Lahori AH, Wang Q, Li R, Zhang Z (2016) Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: a review. Ecotoxicol Environ Saf 126:111–121. https://doi.org/10.1016/j.ecoenv.2015.12.023
CAS
Article
Google Scholar
Manninen S, Zverev V, Bergman I, Kozlov M (2015) Consequences of long-term severe industrial pollution for above ground carbon and nitrogen pools in northern taiga forests at local and regional scales. Sci Total Environ 536:616–624. https://doi.org/10.1016/j.scitotenv.2015.07.097
CAS
Article
Google Scholar
Matyssek R, Wieser G, Calfapietra C et al (2012) Forests under climate change and air pollution: gaps in understanding and future directions for research. Environ Pollut 160:57–65. https://doi.org/10.1016/j.envpol.2011.07.007
CAS
Article
Google Scholar
Maximovich N, Khayrulina E (2014) Artificial geochemical barriers for environmental improvement in a coal basin region. Environ Earth Sci 72:1915–1924. https://doi.org/10.1007/s12665-014-3099-7
CAS
Article
Google Scholar
Minkina TM, Motuzova GV, Nazarenko OG, Kryshchenko VS, Mandzhieva SS (2008) Combined approach for fractioning metal compounds in soils. Eur Soil Sci 41(11):1171–1179. https://doi.org/10.1134/S1064229308110057
Article
Google Scholar
Moiseenko TI, Voinov AA, Megorsky VV et al (2006) Ecosystem and human health assessment to define environmental management strategies: the case of long-term human impacts on an Arctic lake. Sci Total Environ 369(1-3):1–20. https://doi.org/10.1016/j.scitotenv.2006.06.009
CAS
Article
Google Scholar
Morel JL, Chenu C, Lorenz K (2015) Ecosystem services provided by soils of urban, industrial, traffic, mining, and military areas (SUITMAs). J Soils Sediments 15:1659–1666. https://doi.org/10.1007/s11368-014-0926-0
Article
Google Scholar
Nikitin DA, Lysak LV, Mergelov NS, Dolgikh AV, Zazovskaya EP, Goryachkin SV (2020) Microbial biomass, carbon stocks and CO2 emissions in soils of Franz Joseph Land: high-arctic tundra or polar deserts? Eur Soil Sci 53(4)
Pacyna JM, Pacyna EG, Aas W (2009) Changes of emissions and atmospheric deposition of mercury, lead, and cadmium. Atmos Environ 43(1):117–127. https://doi.org/10.1016/j.atmosenv.2008.09.066
CAS
Article
Google Scholar
Perel’man AI (1986) Geochemical barriers: theory and practical applications. Appl Geochem 1(6):669–680. https://doi.org/10.1016/0883-2927(86)90088-0
Article
Google Scholar
Peuelas J, Filella I (2002) Metal pollution in Spanish terrestrial ecosystems during the twentieth century. Chemosphere 46(4):501–505. https://doi.org/10.1016/S0045-6535(01)00171-0
Article
Google Scholar
Plyaskina OV, Ladonin DV (2009) Heavy metal pollution of urban soils. Eur Soil Sci 42:816. https://doi.org/10.1134/S1064229309070138
Article
Google Scholar
Quevauviller P, Rauret G, Griepink B (1993) Single and sequential extraction in sediments and soils. Int J Environ Anal Chem 51(1-4):231–235. https://doi.org/10.1080/03067319308027629
Article
Google Scholar
Radiation safety standards 2.6.1.2523-09 (2009) http://www.ritverc.ru/normadoc/NRB_2009.pdf (In Russian) Accessed 24.12.2019.
Radziemska M (2018) Study of applying naturally occurring mineral sorbents of Poland (dolomite halloysite, chalcedonite) for aided phytostabilization of soil polluted with heavy metals. Catena 163:123–129. https://doi.org/10.1016/j.catena.2017.12.015
CAS
Article
Google Scholar
Rao CRM, Sahuquillo A, Lopez Sancher JF (2008) A review of the different methods applied in environmental geochemistry for single and sequential extraction of trace elements in soils and related materials. Water Air Soil Pollut 189:291–333. https://doi.org/10.1007/s11270-007-9564-0
CAS
Article
Google Scholar
Rees F, Dagois R, Derrien D, Fiorelli JL, Watteau F, Morel JL, Séré G (2019) Storage of carbon in constructed Technosols: in situ monitoring over a decade. Geoderma 337:641–648. https://doi.org/10.1016/j.geoderma.2018.10.009
CAS
Article
Google Scholar
Reports on the status and environmental protection of the Murmansk region (2010-2017) Murmansk region government. https://gov-murman.ru/region/environmentstate/ (in Russian). Accessed 24.12.2019.
Rinklebe J, Shaheen SM, Yu K (2016) Release of As, Ba, Cd, Cu, Pb, and Sr under pre-definite redox conditions in different rice paddy soils originating from the USA and Asia. Geoderma 270:21–32
CAS
Article
Google Scholar
Savvas D, Ntatsi G (2015) Biostimulant activity of silicon in horticulture. Sci Hortic (Amsterdam) 196:66–81. https://doi.org/10.1016/j.scienta.2015.09.010
CAS
Article
Google Scholar
Séré G, Schwartz C, Ouvrard S, Sauvage C, Renat JC, Morel JL (2008) Soil construction: a step for ecological reclamation of derelict lands. J Soils Sediments 8(2):130–136. https://doi.org/10.1065/jss2008.03.277
CAS
Article
Google Scholar
Séré G, Schwartz C, Ouvrard S, Renat JC, Watteau F, Morel JL (2010) Early pedogenic evolution of constructed Technosols. J Soils Sediments 10:1246–1254
Article
Google Scholar
Sharma S, Tiwari S, Hasan A, Saxena V, Pandey LM (2018) Recent advances in conventional and contemporary methods for remediation of heavy metal-contaminated soils. 3 Biotech 8(4):216. https://doi.org/10.1007/s13205-018-1237-8
Article
Google Scholar
Shinkarev AA, Giniyatullin KG, Krinari GA, Gnevashev SG (2003) Systems approach to the study of clay-humus interactions in soils. Eur Soil Sci 36:430–438
Google Scholar
Shutcha MN, Mubemba MM, Faucon MP, Luhembwe MN, Visser M, Colinet G, Meerts P (2010) Phytostabilization of copper-contaminated soil in Katanga: an experiment with three native grasses and two amendments. Int J Phytoremediation 12:616–632. https://doi.org/10.1080/15226510903390411
CAS
Article
Google Scholar
Slukovskaya MV, Ivanova LA, Gorbacheva TT, Drogobuzhskaya SV, Inozemtseva ES, Markovskaya EF (2013) Changes in the properties of industrially wasted ground upon the application of carbonatite ameliorant in the copper-nickel smelter impact area. Trans. Karelian Res. Centre RAS 6:133–142 (in Russian)
Google Scholar
Slukovskaya MV, Kremenetskaya IP, Ivanova LA, Vasilieva TN (2017) Remediation in conditions of an operating copper-nickel plant: results of perennial experiment. Non-ferrous Metals 2:20–26. https://doi.org/10.17580/nfm.2017.02.04
Article
Google Scholar
Slukovskaya MV, Kremenetskaya IP, Drogobuzhskaya SV, Ivanova LA, Mosendz IA, Novikov AI (2018) Serpentine mining wastes - materials for soil rehabilitation in Cu-Ni polluted wastelands. Soil Sci 183(4):141–149. https://doi.org/10.1097/SS.0000000000000236
CAS
Article
Google Scholar
Slukovskaya M, Vasenev V, Ivashchenko K, Morev D, Drogobuzhskaya S, Ivanova L, Kremenetskaya I (2019) Technosols on mining wastes in the subarctic: efficiency of remediation under Cu-Ni atmospheric pollution. Int Soil Water Conserv Res 7:297–307. https://doi.org/10.1016/j.iswcr.2019.04.002
Article
Google Scholar
Smieja-Król B, Fiałkiewicz-Kozieł B, Sikorski J, Palowski B (2010) Heavy metal behaviour in peat–a mineralogical perspective. Sci Total Environ 408(23):5924–5931. https://doi.org/10.1016/j.scitotenv.2010.08.032
CAS
Article
Google Scholar
Smorkalov IA, Vorobeichik EL (2011) Soil respiration of forest ecosystems in gradients of environmental pollution by emissions from copper smelters. Russ J Ecol 42(6):311–320. https://doi.org/10.1134/S1067413611060166
CAS
Article
Google Scholar
Stockmann U, Adams MA, Crawford JW et al (2013) The knowns, known unknowns and unknowns of sequestration of soil organic carbon. Agric Ecosyst Environ 164:80–99. https://doi.org/10.1016/j.agee.2012.10.001
CAS
Article
Google Scholar
Tessier A, Campbell PG, Bisson M (1979) Sequential extraction procedure for the speciation of particulate trace metals. Anal Chem 51(7):844–851. https://doi.org/10.1021/ac50043a017
CAS
Article
Google Scholar
Vasenev VI, Anan'eva ND, Ivashchenko KV (2013) The effect of pollutants (heavy metals and diesel fuel) on the respiratory activity of constructozems (artificial soils). Russ J Ecol 44(6):475–483. https://doi.org/10.1134/S1067413613060118
CAS
Article
Google Scholar
Vasenev VI, Castaldi S, Vizirskaya MM, Ananyeva ND, Shchepeleva AS, Mazirov IM, Ivashchenko KV, Valentini R, Vasenev II (2018) Urban soil respiration and its autotrophic and heterotrophic components compared to adjacent forest and cropland within the Moscow megapolis. In: Vasenev V et al (eds) Megacities 2050: Environmental Consequences of Urbanization. ICLASCSD 2016. Springer Geography, pp. 18-35. https://doi.org/10.1007/978-3-319-70557-6_4
Virto I, Barré P, Chenu C (2008) Microaggregation and organic matter storage at the silt-size scale. Geoderma 146(1-2):326–335
CAS
Article
Google Scholar
Vodyanitskii YN (2008) Heavy metals and metalloids in soils. Moscow, GNU Pochvennyy institute imeni VV Dokuchaeva RASKhN, 84. (in Russian)
Vodyanitskii YN, Shoba SA (2016) Biogeochemical barriers for soil and groundwater bioremediation. Moscow Univ Soil Sci Bull 71(3):89–100. https://doi.org/10.3103/S014768741603008X
Article
Google Scholar
Voropaeva N, Karpachev V, Varlamov V, Figovsky O (2014) Influence of improved (nano) systems on cultivated corn growth, development and field. ILCPA 9:1–7
World Reference Base for Soil Resources (2015) 3rd edn. http://www.fao.org/soils-portal/soil-survey/soil-classification/world-reference-base/en/ Accessed 16 December 2019