A review of carbon isotopes of phytoliths: implications for phytolith-occluded carbon sources

Abstract

Purpose

Phytolith-occluded carbon (PhytOC) is mainly derived from the products of photosynthesis, which can be preserved in soils and sediments for hundreds-to-thousands of years due to the resilient nature of the amorphous phytolith silica. Therefore, stable and radioactive carbon (C) isotopes of phytoliths can be effectively utilized in paleoecological and archeological research. However, there still exists debate about the applicability of C isotopes of phytoliths, as a “two-pool” hypothesis to characterize PhytOC sources has been proposed, whereby a component of the PhytOC is derived from soil organic matter (SOM) absorbed through plant roots. Therefore, it is necessary to review this topic to better understand the source of PhytOC.

Materials and method

We introduce the stable and radioactive C isotopic compositions of PhytOC, present the impacts of different extraction methods on the study of PhytOC, and discuss the implications of these factors for determining the sources of PhytOC.

Results and discussion

Based on this review, we suggest that organic matter synthesized by photosynthesis is the main source of PhytOC. However, it is important to make clear whether and how SOM-derived C present in phytoliths influence the controversial “too-old” skew and isotopic fractionation.

Conclusions

Though the two-pool hypothesis has been proved by many researches, the carbon isotopes of phytoliths still have potential in paleoecology and archeology, because the main source is photosynthesis and many previous studies put forward the availability of these parameters. This review also shows that phytolith C isotopes may vary with different organic C compounds within phytoliths, which needs further study at the molecular scale. Different phytolith extraction methods can influence 14C dating results.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Agrawal S, Sanyal P, Sarkar A, Jaiswal MK, Dutta K (2012) Variability of Indian monsoonal rainfall over the past 100 ka and its implication for C3-C4 vegetational change. Quat Res 77:159–170

    Article  CAS  Google Scholar 

  2. Alexandre A, Basile-Doelsch I, Delhaye T, Borshneck D, Mazur JC, Reyerson P, Santos GM (2015) New highlights of phytolith structure and occluded carbon location: 3-D X-ray microscopy and NanoSIMS results. Biogeosciences 12:863–873

    Article  Google Scholar 

  3. Alexandre A, Balesdent J, Cazevieille P, Chevassus-Rosset C, Signoret P, Mazur JC, Harutyunyan A, Doelsch E, Basile-Doelsch I, Miche H, Santos GM (2016) Direct uptake of organically derived C by grass roots and allocation in leaves and phytoliths: 13C labeling evidence. Biogeosciences 13:1693–1703

    Article  CAS  Google Scholar 

  4. Asscher Y, Weiner S, Boaretto E (2017) A new method for extracting the insoluble occluded C in archaeological and modern phytoliths: detection of 14C depleted C fraction and implications for radioC dating. J Archaeol Sci 78:57–65

    Article  CAS  Google Scholar 

  5. Bartoli F, Wilding LP (1980) Dissolution of biogenic opal as a function of its physical and chemical properties. Soil Sci Soc Am J 44:873–878

    Article  CAS  Google Scholar 

  6. Basu S, Agrawal S, Sanyal P, Mahato P, Kumar S, Sarkar A (2015) C isotopic ratios of modern C3-C4 plants from the gangetic plain, India and its implications to paleovegetational reconstruction. Palaeogeo Palaeoclim Palaeoecol 440:22–32

    Article  Google Scholar 

  7. Blecker SW, Mcculley RL, Chadwick OA, Kelly EF (2006) Biologic cycling of silica across a grassland bioclimosequence. Global Biogeochem Cy 20:4253–4274

    Article  CAS  Google Scholar 

  8. Bremond L, Alexandre A, Vela E, Guiot J (2004) Advantages and disadvantages of phytolith analysis for the reconstruction of Mediterranean vegetation: an assessment based on modern phytolith, pollen and botanical data (Luberon, France). Rev Paleobot Palynol 129:213–228

    Article  Google Scholar 

  9. Carter JA (2009) Atmospheric C isotope signatures in phytolith-occluded C. Quat Int 193:20–29

    Article  Google Scholar 

  10. Cerling TE, Quade J, Wang Y, Bowman JR (1989) C isotopes in soils and paleosols as ecology and palaeoecology indicators. Nature 341:138–139

    Article  CAS  Google Scholar 

  11. Cerling TE, Wang Y, Quade J (1993) Expansion of C4 ecosystems as an indicator of global ecological change in the late Miocene. Nature 361:344–345

    Article  Google Scholar 

  12. Cerling TE, Harris JM, MacFadden BJ, Leakey MG, Quade J, Eisenmann V, Ehleringer JR (1997) Global vegetation change through the Miocene/Pliocene boundary. Nature 389:153–158

    Article  CAS  Google Scholar 

  13. Collister JW, Rieley G, Stern B, Eglinton G, Fry B (1994) Compound-specific δ13C analyses of leaf lipids from plants with differing photosynthetic pathways. Org Geochem 21:619–627

    Article  CAS  Google Scholar 

  14. Corbineau R, Reyerson PE, Alexandre A, Santos GM (2013) Towards producing pure phytolith concentrates from plants that are suitable for C isotopic analysis. Rev Palaeobot Palynol 197:179–185

    Article  Google Scholar 

  15. Currie HA (2007) Silica in plants: biological, biochemical and chemical studies. Ann Bot 100:1383–1389

    Article  CAS  Google Scholar 

  16. Elbaum R, Melamed-Bessudo C, Tuross N, Levy AA, Weiner S (2009) New methods to isolate organic materials from silicified phytoliths reveal fragmented glycoproteins but no DNA. Quat Int 193:11–19

    Article  Google Scholar 

  17. Farquhar GD, And JRE, Hubick KT (2003) C isotope discrimination and photosynthesis. Ann Rev Plant Physiol Plant Mol Biol 40:503–537

    Article  Google Scholar 

  18. Ford CR, Wurzburger N, Hendrick RL, Teskey RO (2007) Soil DIC uptake and fixation in Pinus taeda seedlings and its C contribution to plant tissues and ectomycorrhizal fungi. Tree Physiol 27:375–383

    Article  CAS  Google Scholar 

  19. Freeman KH, Colarusso LA (2001) Molecular and isotopic records of C4 grassland expansion in the late Miocene. Geochim Cosmochim Ac 65:1439–1454

    Article  CAS  Google Scholar 

  20. Gallagher KL, Alfonso-Garcia A, Sanchez J, Potma EO, Santos GM (2015) Plant growth conditions alter phytolith carbon. Front Plant Sci 6

  21. Gillon J, Yakir D (2001) Influence of carbonic anhydrase activity in terrestrial vegetation on the 18O content of atmospheric CO2. Science 291:2584–2587

    Article  CAS  Google Scholar 

  22. Gröcke Darren R (2002) The C isotope composition of ancient CO2 based on higher-plant organic matter. Phil Trans R Soc Lond 360:633

    Article  Google Scholar 

  23. Guo F, Song Z, Sullivan L, Wang H, Liu X, Wang X, Li ZM, Zhao YY (2015) Enhancing phytolith C sequestration in rice ecosystems through basalt powder amendment. Sci Bull 60:591–597

    Article  CAS  Google Scholar 

  24. Hildebrandt TM, Nesi AN, Araújo WL, Braun HP (2015) Amino acid catabolism in plants. Mol Plant 8:1563–1579

    Article  CAS  Google Scholar 

  25. Hodson MJ (2019) The relative importance of cell wall and lumen phytoliths in carbon sequestration in soil: a hypothesis. Front Earth Sci 7

  26. Jones RL, Beavers AH (1964) Aspects of catenary and depth distribution of opal phytoliths in Illinois soils. Soil Sci Soc Amer Proc 28:413–416

    Article  Google Scholar 

  27. Jones LHP, Milne AA, Wadham SM (1963) Studies of silica in the oat plant:II. Distribution of the silica in the plant. Plant Soil 18:358–371

    Article  CAS  Google Scholar 

  28. Kelly EF, Amundson RG, Marino BD, Deniro MJ (1991) Stable isotope ratios of C in phytoliths as a quantitative method of monitoring vegetation and climate change. Quat Res 35:222–233

    Article  CAS  Google Scholar 

  29. Krull ES, Skjemstad JO, Graetz D, Grice K, Dunning W, Cook G, Parr JF (2003) 13C depleted charcoal from C4 grasses and the role of occluded C in phytoliths. Org Geochem 34:1337–1352

    Article  CAS  Google Scholar 

  30. Latorre C, Quade J, Mcintosh WC (1997) The expansion of C4 grasses and global change in the late Miocene: stable isotope evidence from the Americas. Earth Planet Sc Lett 146:83–96

    Article  CAS  Google Scholar 

  31. Li R, Xie S, Gu Y (2010) Advances in the biogeochemical study of phytolith stable isotope. Adv Earth Sci 25:812–819

    CAS  Google Scholar 

  32. Li Z, Song Z, Cornelis JT (2014) Impact of rice cultivar and organ on elemental composition of phytoliths and the release of bio-available silicon. Front Plant Sci 5

  33. Lü H, Wang Y, Wang G, Yang H, Zhen LI (2000) Analysis of C isotope in phytoliths from C3 and C4 plants and modern soils. Chin Sci Bull 45:1804–1808

    Article  Google Scholar 

  34. Madella M, Lancelotti C (2012) Taphonomy and phytoliths: a user manual. Quat Int 275:76–83

    Article  Google Scholar 

  35. McClaran And Umlauf (2000) Desert grassland dynamics estimated from C isotopes in grass phytoliths and soil organic matter. J Veg Sci 11:71–76

  36. McMichael CH, Bush MB, Piperno DR, Silman MR, Zimmerman AR, Anderson C (2012) Spatial and temporal scales of pre-Columbian disturbance associated with western Amazonianlakes. Holocene 22: 131e141.

  37. Nasholm T, Ekblad A, Nordin A, Giesler R, Hogberg M, Hogberg P (1998) Boreal forest plants take up organic nitrogen. Nature 392:914–916

    Article  CAS  Google Scholar 

  38. Pan W, Song Z, Liu H, Van Zwieten L, Li Y, Yang X, Han Y, Liu X, Zhang X, Xu Z, Wang H (2017) The accumulation of phytolith-occluded C in soils of different grasslands. J Soils Sediments 17:2420–2427

    Article  CAS  Google Scholar 

  39. Parr JF, Sullivan LA (2005) Soil C sequestration in phytoliths. Soil Biol Biochem 37:117–124

    Article  CAS  Google Scholar 

  40. Parr JF, Sullivan LA (2011) Phytolith occluded C and silica variability in wheat cultivars. Plant Soil 342:165–171

    Article  CAS  Google Scholar 

  41. Parr JF, Dolic V, Lancaster G, Boyd WE (2001a) A microwave digestion method for the extraction of phytoliths from her-barium specimens. Rev Palaeobot Palynol 116:203–212

  42. Parr JF, Lentfer CJ, Boyd WE (2001b) A comparative analysis of wet and dry ashing techniques for the extraction of phytoliths from plant material. J Archaeol Sci 28:875–886

  43. Parr JF, Boyd WE (2002) The probable industrial origin of archae-ological daub at an iron age site in Northeast Thailand. Geoarchaeology 17:285–303 

  44. Parr JF, Sullivan LA (2014) Comparison of two methods for the isolation of phytolith occluded C from plant material. Plant Soil 374:45–53

    Article  CAS  Google Scholar 

  45. Paungfoo-Lonhienne C, Lonhienne TGA, Rentsch D, Robinson N, Christie M, Webb RI, Gamage HK, Carroll BJ, Schenk PM, Schmidt S (2008) Plants can use protein as a nitrogen source without assistance from other organisms. P Natl Acad Sci USA 105:4524–4529

    Article  Google Scholar 

  46. Piperno DR (1990) Phytolith analysis: an archaeological and geological perspective. Arct Alp Res 54

  47. Piperno DR (2006) Phytoliths: a comprehensive guide for archaeologists and paleoecologists. AltaMira Press, Lanham

    Google Scholar 

  48. Piperno DR (2015) Phytolith radioCarbon dating in archaeological and paleoecological research: a case study of phytoliths from modern neotropical plants and a review of the previous dating evidence. J Archaeol Sci 68:54–61

    Article  Google Scholar 

  49. Piperno DR (2016) Standard evaluations of bomb curves and age calibrations along with consideration of environmental and biological variability show the rigor of phytolith dates on modern neotropical plants: review of comment by Santos, Alexandre, and prior. J Archaeol Sci 71:59–67

    Article  Google Scholar 

  50. Piperno DR, Becker P (1996) Vegetational history of a site in the central amazon basin derived from phytolith and charcoal records from natural soils. Quat Res 45:202–209

    Article  Google Scholar 

  51. Piperno DR, Stothert KE (2003) Phytolith evidence for early Holocene cucurbita domestication in Southwest Ecuador. Science 299:1054–1057

    Article  CAS  Google Scholar 

  52. Quade J, Cerling TE (1995) Expansion of C4 grasses in the Late Miocene of northern Pakistan: evidence from stable isotopes in paleosols. Palaeogeo Palaeoclim Palaeoecol 115:91–116

    Article  Google Scholar 

  53. Quade J, Cerling TE, Bowman JR (1989) Development of Asian monsoon revealed by marked ecological shift during the latest Miocene in northern Pakistan. Nature 342:163–166

    Article  Google Scholar 

  54. Reyerson PE, Alexandre A, Harutyunyan A, Corbineau R, Martinez De La Torre HA, Badeck F, Cattivelli L, Santos GM (2016) Unambiguous evidence of old soil C in grass biosilica particles. Biogeosciences 13:1269–1286

    Article  CAS  Google Scholar 

  55. Sage RF, Li M, Monson RK (1999) The taxonomic distribution of C4 photosynthesis. In: Sage RF, Monson RK (eds) C4 plant biology. Academic Press, San Diego, pp 551–584

    Google Scholar 

  56. Santos GM, Alexandre A, Coe HHG, Reyerson PE, Southon J, De Carvalho CN (2010a) The phytolith 14C puzzle: a tale of background determinations and accuracy tests. RadioC 52:113–128

    Article  CAS  Google Scholar 

  57. Santos GM, Southon JR, Drenzek NJ, Ziolkowski LA, Druffel E, Xu X, Zhang D, Trumbore S, Eglinton TI, Hughen KA (2010b) Blank assessment for ultra-small radiocarbon samples: chemical extraction and separation versus AMS. RadioC 52:1322–1335

    Article  CAS  Google Scholar 

  58. Santos GM, Alexandre A, Southon JR, Treseder KK, Corbineau R, Reyerson PE (2012a) Possible source of ancient C in phytolith concentrates from harvested grasses. Biogeosciences 9:1873–1884

    Article  CAS  Google Scholar 

  59. Santos GM, Southon JR, Alexandre A, Treseder KK, Corbineau R, Reyerson PE (2012b) Interactive comment on “comment on possible source of ancient C in phytolith concentrates from harvested grasses” by GM Santos et al., by LA Sullivan and JF Parr. Biogeosciences 9:6114–6124

    Google Scholar 

  60. Santos GM, Masion A, Alexandre A (2018) When the carbon being dated is not what you think it is: insights from phytolith carbon research. Quaternary Sci Rev 197:162–174

    Article  Google Scholar 

  61. Sanyal P, Bhattacharya SK, Kumar R, Ghosh SK, Sangode SJ (2004) Mio–pliocene monsoonal record from himalayan foreland basin (indian siwalik) and its relation to vegetational change. Palaeogeo Palaeoclim Palaeoeco 205:23–41

    Article  Google Scholar 

  62. Sanyal P, Sarkar A, Bhattacharya SK, Kumar R, Ghosh SK, Agrawal S (2010) Intensification of monsoon, microclimate and asynchronous C4 appearance: isotopic evidence from the Indian siwalik sediments. Palaeogeo Palaeoclim Palaeoecol 296:165–173

    Article  Google Scholar 

  63. Shillito LM (2013) Grains of truth or transparent blindfolds? A review of current debates in archaeological phytolith analysis. Veg Hist Archaeobot 22:71–82

    Article  Google Scholar 

  64. Smith FA, Anderson KB (2001) Characterization of organic compounds in phytoliths: improving the resolving power of phytolith δ13C as a tool for paleoecological reconstruction of C3 and C4 grasses. In: Meunier JD, Colin F (eds) Phytoliths: applications in earth science and human history. A.A. Balkema Publishers, Rotterdam, pp 317–327

    Google Scholar 

  65. Smith FA, White JWC (2004) Modern calibration of phytolith C isotope signatures for C3/C4 paleograssland reconstruction. Palaeogeo Palaeoclim Palaeoecol 207:277–304

    Article  Google Scholar 

  66. Song Z, Liu H, Li B, Yang X (2013a) The production of phytolith-occluded C in China's forests: implications to biogeochemical C sequestration. Glob Chang Biol 19:2907–2915

    Article  Google Scholar 

  67. Song Z, Parr JF, Guo F (2013b) Potential of global cropland phytolith C sink from optimization of cropping system and fertilization. PLoS One 8:e73747

    Article  CAS  Google Scholar 

  68. Song Z, Mcgrouther K, Wang H (2016a) Occurrence, turnover and C sequestration potential of phytoliths in terrestrial ecosystems. Earth-Sci Rev 158:19–30

    Article  CAS  Google Scholar 

  69. Song Z, Mcgrouther K, Wang H (2016b) High potential of phytoliths in terrestrial C sequestration at a centennial–millennial scale: reply to comments by Santos and Alexandre, Earth-Sci Rev https://doi.org/10.1016/j.earscirev.2016.11.00

  70. Strömberg CAE (2004) Using phytolith assemblages to reconstruct the origin and spread of grass-dominated habitats in the Great Plains of North America during the late Eocene to early Miocene. Palaeogeogr Palaeoclimatol Palaeoecol 207:239–275

    Article  Google Scholar 

  71. Sullivan LA, Parr JF (2008) Bomb pulse dating of phytolith-occluded carbon for quantification of carbon sequestration in perennial vegetation, Progress Report no. AINGRA08061, AINSE-Australian Institute of Nuclear Science and Engineering, Lucas Heights, Australia

  72. Sullivan LA, Parr JF (2013) Comment on “possible source of ancient C in phytolith concentrates from harvested grasses” by GM Santos et al. (2012). Biogeosciences 10:977–980

    Article  Google Scholar 

  73. Talbot JM, Treseder KK (2010) Controls over mycorrhizal uptake of organic nitrogen. Pedobiologia 53:169–179

    Article  CAS  Google Scholar 

  74. Talbot JM, Allison SD, Treseder KK (2008) Decomposers in disguise: mycorrhizal fungi as regulators of soil C dynamics in ecosystems under global change. Funct Ecol 22:955–963

    Article  Google Scholar 

  75. Wallis LA (2001) Environmental history of Northwest Australia based on phytolith analysis at Carpenter’s gap 1. Quat Int 83-85:103–117

    Article  Google Scholar 

  76. Wang Y, Amundson R, Trumbore S (1996) Radiocarbon dating of soil organic matter. Quat Res 45:282–288

    Article  Google Scholar 

  77. Watling KM, Parr JF, Rintoul L, Brown CL, Sullivan LA (2011) Raman, infrared and XPS study of bamboo phytoliths after chemical digestion. Spectrochim Acta A 80:106–111

    Article  CAS  Google Scholar 

  78. Webb EA, Longstaffe FJ (2010) Limitations on the climatic and ecological signals provided by the δ13C values of phytoliths from a C4 north American prairie grass. Geochim Cosmochim Ac 74:3041–3050

    Article  CAS  Google Scholar 

  79. Wilding LP (1967) RadioCarbon dating of biogenetic opal. Science 156:66–67

    Article  CAS  Google Scholar 

  80. Yin J, Yang X, Zheng Y (2014) Influence of increasing combustion temperature on the AMS 14C dating of modern crop phytoliths. Sci Rep 4:6511–6514

    Article  CAS  Google Scholar 

  81. Zhang X, Song Z, Zhao Z, van Zwieten L, Li J, Liu L, Xu S, Wang H (2017) Impact of climate and lithology on soil phytolith-occluded C accumulation in eastern China. J Soils Sediments 17:481–490

    Article  CAS  Google Scholar 

  82. Zhang X, Song Z, Hao Q, Wang Y, Ding F, Song A (2019) Phytolith-occluded carbon storages in Forest litter layers in southern China: implications for evaluation of long-term forest carbon budget. Front Plant Sci. https://doi.org/10.3389/fpls.2019.0058

  83. Zuo X, Lu H (2011) Carbon sequestration within millet phytoliths from dry-farming of crops in China. Chin Sci Bull 56: 3451–3456

  84. Zuo X, Lu H, Gu Z (2014) Distribution of soil phytolith-occluded C in the Chinese loess plateau and its implications for silica-C cycles. Plant Soil 374:223–232

    Article  CAS  Google Scholar 

  85. Zuo X, Lu H, Zhang J, Wang C, Sun G, Zheng Y (2016) Radiocarbon dating of prehistoric phytoliths: a preliminary study of archaeological sites in China. Sci Rep 6:26769

    Article  CAS  Google Scholar 

  86. Zuo X, Lu H, Jiang L, Zhang J, Yang X, Huan X, He K, Wang C, Wu N (2017) Dating rice remains through phytolith 14C study reveals domestication at the beginning of the Holocene. P Natl Acad Sci USA 114:6486

    Article  CAS  Google Scholar 

  87. Zuo X, Lu H, Huan X, Jiang L, Wang C (2018) Influence of different extraction methods on prehistoric phytolith radiocarbon dating. Quat Int. https://doi.org/10.1016/j.quaint.2018.12.002

Download references

Funding

This work was supported by the National Natural Science Foundation of China [grant numbers 41930862, 41571130042, 41701049] and the State’s Key Project of Research and Development Plan of China [grant number 2016YFA0601002 and 2017YFC0212700].

Author information

Affiliations

Authors

Corresponding author

Correspondence to Zhaoliang Song.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible editor: Zhiqun Huang

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, S., Hao, Q., Wang, H. et al. A review of carbon isotopes of phytoliths: implications for phytolith-occluded carbon sources. J Soils Sediments 20, 1811–1823 (2020). https://doi.org/10.1007/s11368-019-02548-4

Download citation

Keywords

  • C3 and C4 plants
  • δ13C
  • 14C dating
  • Phytolith extraction method