Skip to main content
Log in

Stoichiometric features of C, N, and P in soil and litter of Tamarix cones and their relationship with environmental factors in the Taklimakan Desert, China

  • Soils, Sec 1 • Soil Organic Matter Dynamics and Nutrient Cycling • Research Article
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

The main objectives of this study were to explore the soil and litter carbon (C), nitrogen (N), and phosphorus (P) stoichiometric features in the Tamarix cones across the Taklimakan Desert, China, and also to verify the relationships between soil C, N, and P stoichiometry and environmental factors, with the ultimate aim of finding out the driving factors for the stoichiometric characteristics of desert soils.

Materials and methods

The soils under Tamarix cones, from the surface to a depth of 500 cm, were sampled in four typical Tamarix habitats (at Qiemo, Qira, Aral, Tazhong) of the Tamarix cones along the periphery and in the hinterland of the Taklimakan Desert. Soil samples were collected to measure soil properties and the concentrations of soil and litter C, N, and P. Analysis of variance (ANOVA) and distance-based redundancy analysis (db-RDA) were used to analyze the vertical patterns of soil C, N, and P stoichiometry and to identify the critical environmental factors influencing soil stoichiometry.

Results and discussion

Soil and litter C and N concentrations decreased with increasing soil depth throughout the profiles, while P concentrations showed no significant differences with depth. Soil C and N concentration, C/P ratios, and N/P ratios were significantly higher at the saline desert site (Qiemo) than at the other sites. Soil C and N were negatively correlated with litter C, N, and P within the 0–500-cm layer. In contrast, soil P was not significantly influenced by litter composition as it is primarily derived from the parent material at the soil bottom. In addition, environmental factors explained > 98% and 68.6% of the total variance of soil and litter stoichiometry, respectively. The results also indicated that, at all sites, the impacts of environmental factors on soil stoichiometry were mainly caused by the soil litter content, silt, sand, and soil water contents. However, at Qiemo, soil stoichiometry was also affected by the clay content, and at Aral and Tazhong, the pH, electrical conductivity, and mean annual temperature also exerted a strong influence on soil stoichiometry.

Conclusions

It could be concluded that the soil properties (such as, soil clay, silt, and sand content) and litter content exert a great influence on the stoichiometry of soil C, N, and P in the Tamarix cones of the Taklimakan Desert. In saline areas, soil salinity (electrical conductivity) and alkalinity (pH) may also influence the soil stoichiometry. In addition, the formation process of Tamarix cones also affects soil stoichiometry. Considering the extremely low precipitation and intensive evaporation in the Taklimakan Desert, this study provides a deep insight into the patterns of soil stoichiometry within extreme arid desert ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adamu GK, Aliyu AK (2012) Determination of the influence of texture and organic matter on soil water holding capacity in and around Tomas Irrigation Scheme, Dambatta, Local Government Kano State. Res J Environ Earth Sci 4:1038–1044

    Google Scholar 

  • Bao SD (2000) Soil agricultural chemistry analysis (in Chinese). China Agriculture Press, Beijing, pp 152–200

    Google Scholar 

  • Bing HJ, Wu YH, Zhou J, Sun HY, Luo J, Wang JP, Yu D (2016) Stoichiometric variation of carbon, nitrogen, and phosphorus in soils and its implication for nutrient limitation in alpine ecosystem of eastern Tibetan Plateau. J Soils Sediments 16(2):405–416

    CAS  Google Scholar 

  • Bradshaw C, Kautsky U, Kumblad L (2012) Ecological stoichiometry and multi-element transfer in a coastal ecosystem. Ecosystems 15:591–603

    CAS  Google Scholar 

  • Canadell JG, Kirschbaum MUF, Kurz WA, Sanz MJ, Schlamadinger B, Yamagata Y (2007) Factoring out natural and indirect human effects on terrestrial carbon sources and sinks. Environ Sci Pol 10:370–384

    Google Scholar 

  • Cao Y, Zhang P, Chen YM (2018) Soil C:N:P stoichiometry in plantations of N-fixing black locust and indigenous pine, and secondary oak forests in Northwest China. J Soils Sediments 18:1478–1489

    CAS  Google Scholar 

  • Castro H, Fortunel C, Freitas H (2010) Effects of land abandonment on plant litter decomposition in a Montado system: relation to litter chemistry and community functional parameters. Plant Soil 333:181–190

    CAS  Google Scholar 

  • Chai H, Yu GR, He NP, Wen D, Li J, Fang JP (2015) Vertical distribution of soil carbon, nitrogen, and phosphorus in typical Chinese terrestrial ecosystems. Chin Geogr Sci 25:549–560

    Google Scholar 

  • Chen Y, Chen L, Peng Y, Ding J, Li F, Yang G (2016) Linking microbial C:N:P stoichiometry to microbial community and abiotic factors along a 3500-km grassland transect on the Tibetan plateau. Glob Ecol Biogeogr 25:1416–1427

    Google Scholar 

  • Cleveland CC, Liptzin D (2007) C:N:P stoichiometry in soil: is there a Redfield ratio for the microbial biomass? Biogeochemistry 85:235–252

    Google Scholar 

  • Delgado-Baquerizo M, Eldridge DJ, Maestre FT, Ochoa V, Gozalo B, Reich PB, Singh BK (2017) Aridity decouples C:N:P stoichiometry across multiple trophic levels in terrestrial ecosystems. Ecosystems 21:459–468

    Google Scholar 

  • Dong ZW, Zhao Y, Lei JQ, Xi YQ (2018) Distribution pattern and influencing factors of soil salinity at Tamarix cones in the Taklimakan Desert. Chin J Plant Ecol 42:873–884 (in Chinese)

    Google Scholar 

  • Elser JJ, Sterner RW, Gorokhova E, Fagan WF, Marknow TA, Cotner JB, Harrison JF, Hobbie SE, Odell GM, Weider LJ (2000) Biological stoichiometry from genes to ecosystems. Ecol Lett 3:540–550

    Google Scholar 

  • Fan JL, Jin XJ, Lei JQ, Xu XW, Zhou HW (2013) Responses of ground water level to pumping water of the Tarim Desert Highway Shelterbelt Project. Chin Agric Sci Bull 2:114–119 (in Chinese)

    Google Scholar 

  • Feng DF, Bao WK, Pang XY (2017) Consistent profile pattern and spatial variation of soil C/N/P stoichiometric ratios in the subalpine forests. J Soils Sediments 17(8):2054–2065

    CAS  Google Scholar 

  • Gao RR, Zhao RH, Yang XJ (2009) Effects of salt temperature on early growth of Halocnemum strobilaceum (Chenopodiacese) seedings. Acta Ecol Sin 29:5395–5405 (in Chinese)

    CAS  Google Scholar 

  • Gong WH, Wang YG, Gao QZ, Shen YP, Wang SD (2011) Ecological comprehensive monitoring for Aral Station in Tarim River Basin. Arid Land Geogr 5:762–771 (in Chinese)

    Google Scholar 

  • Gong XW, Lü GH, Ma Y, Zhang XN, He XM, Guo ZJ (2017) Ecological stoichiometry characteristics in the soil under crown and leaves of two desert halophytes with soil salinity gradients in Ebinur Lake Basin. Sci Silvae Sin 53(04):28–36 (in Chinese)

    Google Scholar 

  • Gries D, Zeng F, Foetzki A, Arndt SK, Bruelheide H, Thomas FM, Zhang X, Runge M (2003) Growth and water relations of Tamarix amosissima and Populus euphratica on Taklamakan desert dunes in relation to depth to a permanent water table. Plant Cell Environ 26:725–736

    Google Scholar 

  • Han H, Wang HB, Yu HG (2015) Ecological stoichiometry of carbon, nitrogen and phosphorus of Phragmites australis population under soil salinity gradients in Chongming Wetlands. Res Environ Yangtze Basin 24(5):816–824 (in Chinese)

    Google Scholar 

  • He MZ, Dijkstra FA (2014) Drought effect on plant nitrogen and phosphorus: a meta-analysis. New Phytol 204:924–931

    CAS  Google Scholar 

  • Jobbágy EG, Jackson RB (2001) The distribution of soil nutrients with depth: global patterns and the imprint of plants. Biogeochemistry 53:51–77

    Google Scholar 

  • Kahle P, Baum C, Boelcke B, Kohl J, Ulrich R (2010) Vertical distribution of soil properties under short-rotation forestry in Northern Germany. J Plant Nutr Soil Sci 173:737–746

    CAS  Google Scholar 

  • Li CJ, Li Y, Ma J (2011) Spatial heterogeneity of soil chemical properties at fine scales induced by Haloxylon ammodendron (Chenopodiaceae) plants in a sandy desert. Ecol Res 26(2):385–394

    CAS  Google Scholar 

  • Li CJ, Lei JQ, Zhao Y (2015) Effect of saline water irrigation on soil development and plant growth in the Takllimakan Desert Highway Shelterbelt. Soil Tillage Res 146:99–107

    Google Scholar 

  • Li CJ, Shi X, Mohamad OA (2017) Moderate irrigation intervals facilitate establishment of two desert shrubs in the Taklimakan Desert Highway Shelterbelt in China. PLoS One 12:e0180875. https://doi.org/10.1371/journal.pone.0180875

    Article  CAS  Google Scholar 

  • Liu X, Zhang Y, Han W, Tang A, Shen J, Cui Z, Vitousek P, Erisman JW, Goulding K, Christie P, Fangmeier A, Zhang F (2013) Enhanced nitrogen deposition over China. Nature 494:459–462

    CAS  Google Scholar 

  • Liu JH, Wang XQ, Ma Y, Tan FZ (2016) Spatial variation of soil salinity on Tamarix ramosissima nebkhas and interdune in oasis-desert ecotone. J Desert Res 36:181–189 (in Chinese)

    CAS  Google Scholar 

  • Liu X, Ma J, Ma ZW, Li LH (2017) Soil nutrient contents and stoichiometry as affected by land-use in an agro-pastoral region of Northwest China. Catena 150:146–153

    CAS  Google Scholar 

  • Manzoni S, Trofymow JA, Jackson RB, Porporato A (2010) Stoichiometric controls on carbon, nitrogen, and phosphorus dynamics in decomposing litter. Ecol Monogr 80:89–106

    Google Scholar 

  • McGroddy ME, Daufresne T, Hedin LO (2004) Scaling of C:N:P stoichiometry in forests worldwide: implications of terrestrial Redfield-type ratios. Ecology 85:2390–2401

    Google Scholar 

  • Muhtar Q, Hiroki T, Mijit H (2002) Formation and internal structure of Tamarix cones in the Taklimakan Desert. J Arid Environ 50:81–97

    Google Scholar 

  • Redfield AC (1958) The biological control of chemical factors in the environment. Am Sci 46:205–211

    CAS  Google Scholar 

  • Schlesinger WH, Raikes JA, Hartley AE, Cross AF (1996) On the spatial pattern of soil nutrients in desert ecosystems. Ecology 77:364–374

    Google Scholar 

  • Sistla SA, Schimel JP (2012) Stoichiometric flexibility as a regulator of carbon and nutrient cycling in terrestrial ecosystems under change. New Phytol 196:68–78

    CAS  Google Scholar 

  • Sterner RW, Elser JJ (2002) Ecological stoichiometry: the biology of elements from molecules to the biosphere. Princeton University Press, Princeton

    Google Scholar 

  • Su YZ, Wang XF, Yang R, Lee J (2010) Effects of sandy desertified land rehabilitation on soil carbon sequestration and aggregation in an arid region in China. J Environ Manag 91:2109–2116

    CAS  Google Scholar 

  • Sun JM, Liu TS (2006) The age of the Taklimakan Desert. Science 312:1621

    CAS  Google Scholar 

  • Sun YW, Xu XW, Li SY (2009) Characteristics of Aeolian Dust along the Tarim Desert highway and its soil hydrological effect. Xinjiang Institute of Ecology and Geography, CAS, Urumqi (in Chinese)

    Google Scholar 

  • Tang Z, An H, Deng L, Wang Y, Zhu G, Shang GZ (2016) Effect of desertification on productivity in a desert steppe. Sci Rep 6:27839

    CAS  Google Scholar 

  • Tian HQ, Chen GS, Zhang C, Melillo JM, Hall CAS (2010) Pattern and variation of C:N:P ratios in China’s soils: a synthesis of observational data. Biogeochemistry 98:139–151

    CAS  Google Scholar 

  • Uselman SM, Snyder KA, Blank RR, Jones TJ (2011) UVB exposure does not accelerate rates of litter decomposition in a semi-arid riparian ecosystem. Soil Biol Biochem 43:1254–1265

    CAS  Google Scholar 

  • Wang SG, Wang JY, Zhou ZJ, Shang KZ (2005) Regional characteristics of three kinds of dust storm events in China. Atmos Environ 39:509–520

    CAS  Google Scholar 

  • Xia XC, Zhao YJ, Wang FB (2004) Stratification features of Tamarix cone and its possible age significance (in Chinese). Chin Sci Bull 49:1539–1540

    CAS  Google Scholar 

  • Yang YH, Fang JY, Tang YH, Ji CJ, Zheng CY, He JS, Zhu B (2008) Storage, patterns and controls of soil organic carbon in the Tibetan grasslands. Glob Chang Biol 14:1592–1599

    Google Scholar 

  • Yang Y, Liu BR, An SS (2018) Ecological stoichiometry in leaves, roots, litters and soil among different plant communities in a desertified region of Northern China. Catena 166:328–338

    CAS  Google Scholar 

  • Yin CH, Shi QM, Liang F, Tian CY (2013) Distribution pattern of soil salinity in Tamarix Nebkhas in Tarim Basin (in Chinese). Bull Soil Water Conser 33:287–293

    Google Scholar 

  • Zechmeister-Boltenstern S, Keiblinger KM, Mooshammer M, Peñuelas J, Richter A, Sardans J, Wanek W (2015) The application of ecological stoichiometry to plant-microbial-soil organic matter transformations. Ecol Monogr 85:133–155

    Google Scholar 

  • Zeng FJ, Song C (2013) Responses of root growth of Alhagi sparsifolia Shap. (Fabaceae) to different simulated groundwater depths in the southern fringe of the Taklimakan Desert, China. J Arid Land 5:220–232

    Google Scholar 

  • Zeng Q, Li X, Dong Y, An S, Darboux F (2016) Soil and plant components ecological stoichiometry in four steppe communities in the Loess Plateau of China. Catena 147:481–488

    CAS  Google Scholar 

  • Zhang XM, Wang YD, Zhao Y, Xu XW, Lei JQ, Hill RL (2017) Litter decomposition and nutrient dynamics of three woody halophytes in the Taklimakan Desert Highway Shelterbelt. Arid Land Res Manag 31:335–331

    CAS  Google Scholar 

  • Zhang K, Su YZ, Yang R (2019) Variation of soil organic carbon, nitrogen, and phosphorus stoichiometry and biogeographic factors across the desert ecosystem of Hexi Corridor, northwestern China. J Soils Sediments 19:49–57

    Google Scholar 

  • Zhao YJ, Xia XC (2011) Research on the relationship between Tamarix cone and environmental change in Lop Nur Region of Xinjiang. Science Press, Beijing, pp 38–142

    Google Scholar 

  • Zhao HM, Huang G, Ma J, Li Y, Tang L (2014) Decomposition of aboveground and root litter for three desert herbs: mass loss and dynamics of mineral nutrients. Biol Fertil Soils 50(5):745–753

    CAS  Google Scholar 

  • Zhao HM, Huang G, Li Y, Ma J, Sheng JD, Jia HT, Li CJ (2015) Effects of increased summer precipitation and nitrogen addition on root decomposition in a Temperate Desert. PLoS One. https://doi.org/10.1371/journal.pone.0142380

    Google Scholar 

  • Zheng T, Li JG, Li WH, Wan JH (2010) Soil heterogeneity and its effects on plant community in oasis desert transition zone in the lower peaches of Tarim River. J Desert Res 30:128–134

    Google Scholar 

  • Zohra O, Abdelhakim B, Nadhem B, Mohamed G (2017) Soil property and soil organic carbon pools and stocks of soil under oases in arid regions of Tunisia. Environ Earth Sci 76:415

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Professor Sujith Ravi’s help for refining the manuscript.

Funding

This work was supported by the National Key Research and Development Program (2017YFC0506705), the National Natural Science Foundation of China (31971731, 41571011, 31700423), Xinjiang Key Research and Development Program (2019B00005), the Thousand Youth Talents Plan Project (Y472241001), and the Youth Innovation Promotion Association of Chinese Academy of Sciences (2017476).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Congjuan Li or Shengyu Li.

Additional information

Responsible editor: Weixin Ding

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 350 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, Z., Li, C., Li, S. et al. Stoichiometric features of C, N, and P in soil and litter of Tamarix cones and their relationship with environmental factors in the Taklimakan Desert, China. J Soils Sediments 20, 690–704 (2020). https://doi.org/10.1007/s11368-019-02481-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-019-02481-6

Keywords

Navigation