Skip to main content

Advertisement

Log in

Nitrogen fertilizer enhances zinc and cadmium uptake by hyperaccumulator Sedum alfredii Hance

  • Soils, Sec 3 • Remediation and Management of Contaminated or Degraded Lands • Research Article
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

Nitrogen (N) fertilization is known to have a substantial effect on heavy metal uptake in plants. However, the impact of N fertilization on plant growth and heavy metal uptake of hyperaccumulator plants remains unclear. This study examined the effect of N fertilization on growth and uptake of zinc (Zn) and cadmium (Cd) in Zn/Cd-hyperaccumulating plants species, Sedum alfredii (S. alfredii) Hance (Crassulaceae).

Materials and methods

Plants of S. alfredii were grown for 60 days in nutrient solution with 100 μmol Cd L−1 and 0–10 mmol N L−1, and in a Cd-contaminated soil receiving N fertilizer and composted pig manure amendment. Biomass production, nutrient uptake, and concentrations and accumulation of Zn and Cd in plant parts were measured.

Results and discussion

In the hydroponic experiment, both low (< 1 mmol L−1) and high (> 5 mmol L−1) N supply decreased the growth and Zn and Cd accumulation in the whole plants. The 2.5 mmol N L−1 is an optimal N dosage for shoot biomass production and Zn accumulation in shoots, while the 1.0 mmol N L−1 is an optimal N dosage for Cd accumulation in shoots, which was 68.1% higher than the control. The N doses of 1 to 2.5 mmol L−1 N represented optimal conditions for Zn and Cd accumulation in the shoots of S. alfredii seedlings. In the soil pot experiment, shoot dry weight decreased with increasing N fertilization rate, while composted pig manure decreased biomass production. Both Zn and Cd accumulation in the shoots of S. alfredii decreased along with the addition of higher N fertilization rate. However, the composted pig manure amendment increased the accumulation of Zn, but not Cd in the shoots.

Conclusions

The application of N at appropriate amount enhanced the phytoremediation efficiency by S. alfredii in Zn/Cd-polluted fields, but the effectiveness of phytoextraction technology needs to be validated in the field trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agnello AC, Bagard M, Van Hullebusch ED, Esposito G, Huguenot D (2016) Comparative bioremediation of heavy metals and petroleum hydrocarbons co-contaminated soil by natural attenuation, phytoremediation, bioaugmentation and bioaugmentation-assisted phytoremediation. Sci Total Environ 563:693–703

    Google Scholar 

  • Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals-concepts and applications. Chemosphere 91:869–881

    CAS  Google Scholar 

  • Arnamwong S, Wu LH, Hu PJ, Yuan C, Thiravetyan P, Luo YM, Christie P (2015) Phytoextraction of cadmium and zinc by Sedum plumbizincicola using different nitrogen fertilizers, a nitrification inhibitor and a urease inhibitor. Int J Phytoremediat 17:382–390

    CAS  Google Scholar 

  • Arnesen AKM, Singh BR (1998) Plant uptake and DTPA-extractability of Cd, Cu, Ni and Zn in a Norwegian alum shale soil as affected by previous addition of dairy and pig manures and peat. Can J Soil Sci 78:531–539

    CAS  Google Scholar 

  • Ayangbenro A, Babalola O (2017) A new strategy for heavy metal polluted environments: a review of microbial biosorbents. Int J Env R Pub He 14:94

    Google Scholar 

  • Bao SD (2000) Soil and agricultural chemistry analysis. Chinese Agriculture Press, Beijing

    Google Scholar 

  • Bolan N, Kunhikrishnan A, Thangarajan R, Kumpiene J, Park J, Makino T, Krikham MB, Scheckel K (2014) Remediation of heavy metal (loid)s contaminated soils-to mobilize or to immobilize? J Hazard Mater 266:141–166

    CAS  Google Scholar 

  • Burges A, Alkorta I, Epelde L, Garbisu C (2018) From phytoremediation of soil contaminants to phytomanagement of ecosystem services in metal contaminated sites. Int J Phytoremediat 20:384–397

    CAS  Google Scholar 

  • Carignan R, Tessier A (1988) The co-diagenesis of sulfur and iron in acid lake sediments of southwestern Québec. Geochim Cosmochim Ac 52:1179–1188

    CAS  Google Scholar 

  • Chaffei C, Pageau K, Suzuki A, Gouia H, Ghorbel MH, Masclaux-Daubresse C (2004) Cadmium toxicity induced changes in nitrogen management in Lycopersicon esculentum leading to a metabolic safeguard through an amino acid storage strategy. Plant Cell Physiol 45:1681–1693

    CAS  Google Scholar 

  • Chang YS, Chang YJ, Lin CT, Lee MC, Wu CW (2013) Nitrogen fertilization promotes the phytoremediation of cadmium in Pentas lanceolata. Int Biodeterior Biodegradation 85:709–714

    CAS  Google Scholar 

  • Cheng MM, Wang AN, Tang CX (2017) Ammonium-based fertilizers enhance cd accumulation in Carpobrotus rossii grown in two soils differing in pH. Chemosphere 188:689–696

    CAS  Google Scholar 

  • Dai W, Zhao KL, Fu WJ, Jiang PK, Li YF, Zhang CS, Gielen G, Gong X, Li YH, Wang HL, Wu JS (2018) Spatial variation of organic carbon density in topsoils of a typical subtropical forest, southeastern China. Catena 167:181–189

    CAS  Google Scholar 

  • Garbisu C, Alkorta I (2001) Phytoextraction: a cost-effective plant-based technology for the removal of metals from the environment. Bioresour Technol 77:229–236

    CAS  Google Scholar 

  • Giansoldati V, Tassi E, Morelli E, Gabellieri E, Pedron F, Barbafieri M (2012) Nitrogen fertilizer improves boron phytoextraction by Brassica juncea grown in contaminated sediments and alleviates plant stress. Chemosphere 87:1119–1125

    CAS  Google Scholar 

  • Guo JM, Lei M, Yang JX, Yang J, Wan XM, Chen TB, Zhou XY, Gu SP, Guo GH (2017) Effect of fertilizers on the Cd uptake of two sedum species (Sedum spectabile Boreau and Sedum aizoon L.) as potential Cd accumulators. Ecol Eng 106:409–414

    Google Scholar 

  • Gupta DK, Chatterjee S, Datta S, Veer V, Walther C (2014) Role of phosphate fertilizers in heavy metal uptake and detoxification of toxic metals. Chemosphere 108:134–144

    CAS  Google Scholar 

  • Hao HL, Wei YZ, Yang XE, Feng Y, Wu CY (2007) Effects of different nitrogen fertilizer levels on Fe, Mn, Cu and Zn concentrations in shoot and grain quality in rice (Oryza sativa). Rice Sci 14:289–294

    Google Scholar 

  • Hrynkiewicz K, Złoch M, Kowalkowski T, Baum C, Buszewski B (2018) Efficiency of microbially assisted phytoremediation of heavy-metal contaminated soils. Environ Rev 26:316–332

    CAS  Google Scholar 

  • Hu PJ, Yin YG, Ishikawa S, Suzui N, Kawachi N, Fujimaki S, Igura M, Yuan C, Huang JX, Li Z, Makino T, Luo YM, Christie P, Wu LH (2013) Nitrate facilitates cadmium uptake, transport and accumulation in the hyperaccumulator Sedum plumbizincicola. Environ Sci Pollut Res 20:6306–6316

    CAS  Google Scholar 

  • Jacobs A, De Brabandere L, Drouet T, Sterckeman T, Noret N (2018) Phytoextraction of Cd and Zn with Noccaea caerulescens for urban soil remediation: influence of nitrogen fertilization and planting density. Ecol Eng 16:178–187

    Google Scholar 

  • Kelly JJ, Häggblom MM, Tate RL (2003) Effects of heavy metal contamination and remediation on soil microbial communities in the vicinity of a zinc smelter as indicated by analysis of microbial community phospholipid fatty acid profiles. Biol Fertil Soils 38:65–71

    CAS  Google Scholar 

  • Kumar PBAN, Dushenkov V, Motto H, Raskin I (1995) Phytoextraction: the use of plants to remove heavy metals from soils. Environ Sci Technol 29:1232–1238

    CAS  Google Scholar 

  • Li NY, Fu QL, Zhuang P, Guo B, Zou B, Li ZA (2012) Effect of fertilizers on Cd uptake of Amaranthus hypochondriacus, a high biomass, fast growing and easily cultivated potential Cd hyperaccumulator. Int J phytoremediat 14:162–173

    Google Scholar 

  • Li S, Chen JR, Islam E, Wang Y, Wu JS, Ye ZQ, Yan WB, Peng DL, Liu D (2016) Cadmium-induced oxidative stress, response of antioxidants and detection of intracellular cadmium in organs of moso bamboo (Phyllostachys pubescens) seedlings. Chemosphere 153:107–114

    CAS  Google Scholar 

  • Li YC, Li YF, Chang SX, Yang YF, Fu SL, Jiang PK, Luo Y, Yang M, Chen ZH, Hu SD, Zhao MX, Liang X, Xu QF, Zhou GM, Zhou JZ (2018a) Biochar reduces soil heterotrophic respiration in a subtropical plantation through increasing soil organic carbon recalcitrancy and decreasing carbon-degrading microbial activity. Soil Biol Biochem 122:173–185

    CAS  Google Scholar 

  • Li YF, Hu SD, Chen JH, Müller K, Li YC, Fu WJ, Lin ZW, Wang HL (2018b) Effects of biochar application in forest ecosystems on soil properties and greenhouse gas emissions: a review. J Soils Sediments 18:546–563

    CAS  Google Scholar 

  • Li YF, Zhang JJ, Scott X, Chang, Jiang PK, Zhou GM, Fu SL, Yan ER, Wu JS, Lin L (2013) Long-term intensive management effects on soil organic carbon pools and chemical composition in Moso bamboo (Phyllostachys pubescens) forests in subtropical China. Forest Ecol Manag 303:121–131

    Google Scholar 

  • Liu H, Ding Y, Zhang Q, Liu X, Xu J, Li Y, Di H (2018) Heterotrophic nitrification and denitrification are the main sources of nitrous oxide in two paddy soils. Plant Soil. https://doi.org/10.1007/s11104-018-3860-x

    Google Scholar 

  • Liu WX, Wang QL, Wang BB, Hou JY, Luo YM, Tang CX, Franks AE (2015) Plant growth-promoting rhizobacteria enhance the growth and Cd uptake of Sedum plumbizincicola in a Cd-contaminated soil. J Soils Sediments 15:1191–1199

    CAS  Google Scholar 

  • Liu WX, Zhang CJ, Hu PJ, Luo YM, Wu LH, Sale P, Tang CX (2016) Influence of nitrogen form on the phytoextraction of cadmium by a newly discovered hyperaccumulator Carpobrotus rossii. Environ Sci Pollut Res 23:1246–1253

    CAS  Google Scholar 

  • Liu YL, Ge TD, Jun Y, Liu SL, Shibistova O, Wang P, Wang JK, Li Y, Guggenberger G, Kuzyakov Y, Wu JS (2019) Initial utilization of rhizodeposits with rice growth in paddy soils: rhizosphere and N fertilization effects. Geoderma 338:30–39

    CAS  Google Scholar 

  • Luo BF, Du ST, Lu KX, Liu JW, Lin XY, Jin CW (2012) Iron uptake system mediates nitrate-facilitated cadmium accumulation in tomato (Solanum lycopersicum) plants. J Exp Bot 63:3127–3136

    CAS  Google Scholar 

  • Luo Y, Zhu Z, Liu S, Peng P, Xu J, Brookes P, Ge T, Wu J (2018) Nitrogen fertilization increases rice rhizodeposition and its stabilization in soil aggregates and the humus fraction. Plant Soil. https://doi.org/10.1007/s11104-018-3833-0

    Google Scholar 

  • Mahar A, Wang P, Ali A, Awasthi MK, Lahori AH, Wang Q, Li RH, Zhang ZQ (2016) Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: a review. Ecotox Environ Safe 126:111–121

    CAS  Google Scholar 

  • Marques AP, Rangel AOSS, Castro PML (2009) Remediation of heavy metal contaminated soils: phytoremediation as a potentially promising clean-up technology. Crit Rev Environ Sci Technol 39:622–654

    CAS  Google Scholar 

  • Monsant AC, Tang C, Baker AJM (2008) The effect of nitrogen form on rhizosphere soil pH and zinc phytoextraction by Thlaspi caerulescens. Chemosphere 73:635–642

    CAS  Google Scholar 

  • Monsant AC, Wang YL, Tang CX (2010) Nitrate nutrition enhances zinc hyperaccumulation in Noccaea caerulescens (Prayon). Plant Soil 336:391–404

    CAS  Google Scholar 

  • Murphy J, Riley J (1962) A modified single solution method for the determination of PO% in natural waters. Anal Chim Acta 27:31–36

    CAS  Google Scholar 

  • Nagajyoti PC, Lee KD, Sreekanth TVM (2010) Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett 8:199–216

    CAS  Google Scholar 

  • Nedjimi B, Daoud Y (2009) Cadmium accumulation in Atriplex halimus subsp. schweinfurthii and its influence on growth, proline, root hydraulic conductivity and nutrient uptake. Flora-Morphology Dist Func Ecol Plants 204:316–324

    Google Scholar 

  • Nelson DW, Sommers LE (1982) Total carbon, organic carbon and organic matter. In: Methods of soil analysis part 2. Chemical and Microbial Properties. Am. Soc. Agron. Soil Sci. Soc. Am Madison, WI, pp 408–411

    Google Scholar 

  • Padmavathiamma PK, Li LY (2007) Phytoremediation technology: hyper-accumulation metals in plants. Water Air Soil Pollut 184:105–126

    CAS  Google Scholar 

  • Paz-Ferreiro J, Lu H, Fu S, Méndez A, Gascó G (2014) Use of phytoremediation and biochar to remediate heavy metal polluted soils: a review. Solid Earth 5:65–75

    Google Scholar 

  • Pandey VC, Pandey DN, Singh N (2015) Sustainable phytoremediation based on naturally colonizing and economically valuable plants. J Clean Prod 86:37–39

    CAS  Google Scholar 

  • Pan H, Xie K, Zhang Q, Jia Z, Xu J, Di H, Li Y (2018) Archaea and bacteria respectively dominate nitrification in lightly and heavily grazed soil in a grassland system. Biol Fertil Soils 54:41–54

    CAS  Google Scholar 

  • Schwartz C, Echevarria G, Morel JL (2003) Phytoextraction of cadmium with Thlaspi caerulescens. Plant Soil 249:27–35

    CAS  Google Scholar 

  • Sessitsch A, Kuffner M, Kidd P, Vangronsveld J, Wenzel WW, Fallmann K, Puschenreiter M (2013) The role of plant-associated bacteria in the mobilization and phytoextraction of trace elements in contaminated soils. Soil Biol Biochem 60:182–194

    CAS  Google Scholar 

  • Simard RR (1993) Ammonium acetate extractable elements. In: Martin R, Carter S (eds) Soil sampling and methods of analysis. Lewis Publisher, FL, pp 39–43

    Google Scholar 

  • Wang X, Chen C, Wang JL (2017) Cs phytoremediation by Sorghum bicolor cultivated in soil and in hydroponic system. Int J Phytoremediat 19:402–412

    CAS  Google Scholar 

  • Wei SH, Wang SS, Zhou QX, Zhan J, Ma LH, Wu ZJ, Sun TH, Prasad MNV (2010) Potential of Taraxacum mongolicum Hand-Mazz for accelerating phytoextraction of cadmium in combination with eco-friendly amendments. J Hazard Mater 181:480–484

    CAS  Google Scholar 

  • Wiszniewska A, Hanus-Fajerska E, Muszyńska E, Ciarkowska K (2016) Natural organic amendments for improved phytoremediation of polluted soils: a review of recent progress. Pedosphere 26:1–12

    Google Scholar 

  • Xiao ML, Zang HD, Liu SL, Ye RZ, Zhu ZK, Su YR, Wu JS, Ge TD (2019) Nitrogen fertilization alters the distribution and fates of photosynthesized carbon in rice–soil systems: a 13C-CO2 pulse labeling study. Plant Soil. https://doi.org/10.1007/s11104-019-04030-z

    CAS  Google Scholar 

  • Xiao WD, Li D, Ye XZ, Xu HZ, Yao GH, Wang JW, Zhang Q, Hu J, Gao N (2017) Enhancement of Cd phytoextraction by hyperaccumulator Sedum alfredii using electrical field and organic amendments. Environ Sci Pollut Res 24:5060–5067

    CAS  Google Scholar 

  • Yan WB, Mahmood Q, Peng DL, Fu WJ, Chen T, Wang Y, Li S, Chen JR, Liu D (2015) The spatial distribution pattern of heavy metals and risk assessment of moso bamboo forest soil around lead–zinc mine in Southeastern China. Soil Till Res 153: 120-130

    Google Scholar 

  • Yang W, Dai HP, Dou XK, Zhang QR, Wei SH (2019) Effect and mechanism of commonly used four nitrogen fertilizers and three organic fertilizers on Solanum nigrum L. hyperaccumulating Cd. Environ Sci Pollut Res 26:12940–12947

    CAS  Google Scholar 

  • Yang XE, Long XX, Ye HB, He ZL, Calvert DV, Stoffella PJ (2004) Cadmium tolerance and hyperaccumulation in a new Zn-hyperaccumulating plant species (Sedum alfredii Hance). Plant Soil 259:181–189

    CAS  Google Scholar 

  • Yang XE, Ye HB, Long XX, He B, He ZL, Stoffella PJ, Calvert DV (2005) Uptake and accumulation of cadmium and zinc by Sedum alfredii Hance at different Cd/Zn supply levels. J Plant Nutr 27:1963–1977

    Google Scholar 

  • Yang ZB, Liu LX, Lv YF, Cheng Z, Xu XX, Xian JR, Zhu XM, Yang YX (2018) Metal availability, soil nutrient, and enzyme activity in response to application of organic amendments in Cd-contaminated soil. Environ Sci Pollut Res 25:2425–2435

    CAS  Google Scholar 

  • Yavari S, Malakahmad A, Sapari NB, Yavari S (2018) Nutrients balance for improvement of phytoremediation ability of teak seedlings (Tectona grandis). J Plant Nutr 41:545–551

    CAS  Google Scholar 

  • Zaccheo P, Crippa L, Pasta VDM (2006) Ammonium nutrition as a strategy for cadmium mobilisation in the rhizosphere of sunflower. Plant Soil 283:43–56

    CAS  Google Scholar 

  • Zhang RR, Liu Y, Xue WL, Chen RX, Du ST, Jin CW (2016) Slow-release nitrogen fertilizers can improve yield and reduce Cd concentration in pakchoi (Brassica chinensis L.) grown in Cd-contaminated soil. Environ Sci Pollut Res 23:25074–25083

    CAS  Google Scholar 

  • Zhao KL, Fu WJ, Qiu QZ, Ye ZQ, Li YF, Tunney H, Dou CY, Zhou KN, Qian XB (2019) Spatial patterns of potentially hazardous metals in paddy soils in a typical electrical waste dismantling area and their pollution characteristics. Geoderma 337:453–462

    CAS  Google Scholar 

  • Zhou GD, Guo JM, Yang J, Yang JX (2018) Effect of fertilizers on Cd accumulation and subcellular distribution of two cosmos species (Cosmos sulphureus and Cosmos bipinnata). Int J Phytoremediat 20:930–938

    CAS  Google Scholar 

Download references

Funding

The National Natural Science Foundation of China (31670617, 21577131), the National Key Research and Development Project (2017YFD0801302), the Key Research and Development Project of Science Technology Department of Zhejiang Province (2018C03028), and Guangdong Provincial Natural Science Foundation, China (2017A030311019), supported this study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yongfu Li or Zhengqian Ye.

Additional information

Responsible editor: Jianming Xue

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Z., Dou, C., Li, Y. et al. Nitrogen fertilizer enhances zinc and cadmium uptake by hyperaccumulator Sedum alfredii Hance. J Soils Sediments 20, 320–329 (2020). https://doi.org/10.1007/s11368-019-02405-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-019-02405-4

Keywords

Navigation