Skip to main content
Log in

Biocrusts resist runoff erosion through direct physical protection and indirect modification of soil properties

  • Soils, Sec 2 • Global Change, Environ Risk Assess, Sustainable Land Use • Research Article
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

Biological soil crusts (biocrusts) are ubiquitous in arid and semi-arid regions and play many critical roles in soil stabilization and erosion prevention, greatly decreasing soil loss. Although sediments may be completely controlled by well-developed biocrusts, runoff loss is observed. Consequently, it is important to study how biocrusts resist runoff erosion in different developmental stages to evaluate and manage water erosion.

Materials and methods

In the Loess Plateau Region, we sampled 32 biocrust plots representing eight stages of biocrust development and 5 slope cropland soil plots as bare soil control plots. We then used a rectangular open channel hydraulic flume to test the effects of biocrust development on runoff erosion.

Results and discussion

As expected, the establishment of biocrusts enhanced soil stability, and accordingly, soil anti-scourability significantly increased with biocrust development. Biocrusts exhibiting more than 36% or 1.22 g dm−2 of moss coverage or biomass fully protected the soil from runoff erosion. Moreover, soil properties, such as soil organic matter, soil cohesion and soil bulk density, were also important in reducing erosion. The findings indicated that biocrusts inhibited runoff erosion through direct physical protection related to biocrust cover and biomass and through the indirect modification of soil properties. In the early biocrust development stage (when moss cover was less than 36%), cyanobacterial biocrust played a primary role in providing resistance to runoff erosion, with resistance being positively related to cyanobacterial biomass (chlorophyll a) and influenced by soil properties.

Conclusions

The relationship between soil anti-scourability and moss coverage or biomass can be divided into two stages based on a moss cover or biomass threshold. The capacity of biocrusts to resist runoff erosion was limited when moss cover was below the threshold value. Therefore, the stage corresponding to this level of moss cover should be of concern when estimating, predicting and managing water erosion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Belnap J, Rosentreter R, Leonard S, Kaltenecker JH, Williams J, Eldridge D (2001) Biological soil crusts: ecology and management. United States Department of the Interior Bureau of land management printed materials distribution center, Denver, Colorado

  • Belnap J (2003) Biological soil crusts and wind erosion. In: Belnap J, Lange O (eds) Biological soil crusts: structure, function, and management. Springer-Verlag, Berlin, pp 339–347

    Chapter  Google Scholar 

  • Belnap J (2006) The potential roles of biological soil crusts in dryland hydrologic cycles. Hydrol Process 20:3159–3178

    Article  CAS  Google Scholar 

  • Belnap J, Büdel B (2016) Biological soil crusts as soil stabilizers. In: Weber B, Büdel B, Belnap J (eds) Biological soil crusts as an organizing principle in drylands. Springer International Publishing, pp 305–320

  • Belnap J, Phillips SL, Witwicki DL, Miller ME (2008) Visually assessing the level of development and soil surface stability of cyanobacterially dominated biological soil crusts. J Arid Environ 72:1257–1264

    Article  Google Scholar 

  • Belnap J, Wilcox BP, Van Scoyoc MW, Phillips SL (2012) Successional stage of biological soil crusts: an accurate indicator of ecohydrological condition. Ecohydrol 6:474–482

    Article  Google Scholar 

  • Belnap J, Walker BJ, Munson SM, Gill RA (2014) Controls on sediment production in two US deserts. Aeolian Res 14:15–24

    Article  Google Scholar 

  • Belnap J, Weber B, Büdel B (2016) Biological soil crusts as an organizing principle in drylands. In: Weber B, Büdel B, Belnap J (eds) Biological soil crusts as an organizing principle in drylands. Springer International Publishing, pp 3–13

  • Bowker MA, Belnap J, Chaudhary VB, Johnson NC (2008) Revisiting classic water erosion models in drylands: the strong impact of biological soil crusts. Soil Biol Biochem 40:2309–2316

    Article  CAS  Google Scholar 

  • Castle SC, Morrison CD, Barger NN (2011) Extraction of chlorophyll a from biological soil crusts: a comparison of solvents for spectrophotometric determination. Soil Biol Biochem 43:853–856

    Article  CAS  Google Scholar 

  • Chaudhary VB, Bowker MA, O'Dell TE, Grace JB, Redman AE, Rillig MC, Johnson NC (2009) Untangling the biological contributions to soil stability in semiarid shrublands. Ecol Appl 19:110–122

    Article  Google Scholar 

  • Danin A, Ganor E (1991) Trapping of airborne dust by mosses in the Negev Desert, Israel. Earth Surf Process Landf 16:153–162

    Article  Google Scholar 

  • Eldridge DJ, Greene B (1994) Microbiotic crusts: a view of roles in soil and ecological processes in the rangelands of Australia. Aust J Soil Res 32:389–415

    Article  Google Scholar 

  • Eldridge DJ, Zaady E, Shachak M (2000) Infiltration through three contrasting biological soil crusts in patterned landscapes in the Negev, Israel. Catena 40:323–336

    Article  Google Scholar 

  • Gao LQ (2017) Effects and the mechanism of biological soil crusts on water erosion prevention on the Loess Plateau. Doctor, Research Center of Soil and Water Conservation and Ecological Environment, the University of Chinese Academy of Sciences and Ministry of Education

  • Gao LQ, Zhao YG, Qin NQ, Zhang GX, Yang K (2012) Impact of biological soil crust on soil physical properties in the Hilly Loess Plateau Region. China J Nat Resour 27:1316–1326

    Google Scholar 

  • Gao LQ, Bowker MA, Xu MX, Sun H, Tuo DF, Zhao YG (2017) Biological soil crusts decrease erodibility by modifying inherent soil properties on the Loess Plateau, China. Soil Biol Biochem 105:49–58

    Article  CAS  Google Scholar 

  • Greene R, Chartres CJ, Hodgkinson KC (1990) The effects of fire on the soil in a degraded semi-arid woodland. I. Cryptogam cover and physical and micromorphological properties. Aust J Soil Res 28:755–777

    Article  Google Scholar 

  • Knapen A, Poesen J, Galindo-Morales P, De Baets S, Pals A (2007) Effects of microbiotic crusts under cropland in temperate environments on soil erodibility during concentrated flow. Earth Surf Process Landf 32:1884–1901

    Article  Google Scholar 

  • Li Y, Wu Q, Zhu X, Tian J (1990) Studies on the intensification of soil anti-scourability by plant roots in the Loess Plateau-I. the increasing effect of soil anti-scourability by the roots of chinese pine. J Soil Water Conserv 4:1–5+10

    Google Scholar 

  • Li Q, Liu GB, Xu MX, Sun H, Zhang Z, Gao LQ (2013a) Effect of seasonal freeze-thaw on soil anti-scouribility and its related physical property in hilly Loess Plateau. Trans Chin Soc Agric Eng 29:105–112

    Google Scholar 

  • Li Q, Liu GB, Xu MX, Zhang Z, Sun H (2013b) Soil anti-scouribility and its related physical properties on abandoned land in the Hilly Loess Plateau. Trans Chin Soc Agric Eng 29:153–159

    CAS  Google Scholar 

  • Li L, Zhao YG, Wang YH, Wang Y (2015) Impact of different types of biological soil crusts on slope runoff generation. J Nat Resour 30:1013–1023

    Google Scholar 

  • Liu F, Zhang GH, Sun F, Wang H, Sun L (2017) Quantifying the surface covering, binding and bonding effects of biological soil crusts on soil detachment by overland flow. Earth Surf Process Landf 42:240–2648

    Article  Google Scholar 

  • Mager DM, Thomas AD (2011) Extracellular polysaccharides from cyanobacterial soil crusts: a review of their role in dryland soil processes. J Arid Environ 75:91–97

    Article  Google Scholar 

  • Morgan RPC (2005) Soil Erosion and conservation, 3rd edn. Blackwell, London

    Google Scholar 

  • Munson SM, Belnap J, Okin GS (2011) Responses of wind erosion to climate-induced vegetation changes on the Colorado plateau. PNAS 108:3854–3859

    Article  CAS  Google Scholar 

  • Ran MY, Zhao YG, Liu YL (2011) Soil anti-scourability of biological soil crust with different coverage in Loess hilly region. Soil Water Conserv China (12):43–45

  • Rodríguez-Caballero E, Canton Y, Chamizo S, Afana A, Solé-Benet A (2012) Effects of biological soil crusts on surface roughness and implications for runoff and erosion. Geomorphology 145:81–89

    Article  Google Scholar 

  • Rodríguez-Caballero E, Cantón Y, Lazaro R, Solé-Benet A (2014) Cross-scale interactions between surface components and rainfall properties. Non-linearities in the hydrological and erosive behavior of semiarid catchments. J Hydrol 517:815–825

    Article  Google Scholar 

  • Wang Y, Zhao YG, Yao CZ, Zhang PP (2014) Surface roughness characteristics of biological soil crusts and its influencing factors in the hilly Loess Plateau region, China. Chin J Appl Ecol 25:647–656

    Google Scholar 

  • Wang YH, Zhao YG, Li L, Gao LQ, Hu ZX (2016) Distribution patterns and spatial variability of vegetation and biocrusts in revegetated lands in different rainfall zones of the Loess Plateau region, China. Acta Ecol Sin 36:377–386

    Article  Google Scholar 

  • Yang LN (2013) Diversity and ecological suitability of cyanophytes in biological soil crusts on the Loess Plateau. Master, Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences and Ministry of Education

  • Zhang G, Liu B, Liu G, He X, Nearing MA (2003) Detachment of undisturbed soil by shallow flow. Soil Sci Soc Am J 67:713–719

    Article  CAS  Google Scholar 

  • Zhang GH, Liu GB, Wang GL, Wang YX (2011) Effects of vegetation cover and rainfall intensity on sediment-bound nutrient loss, size composition and volume fractal dimension of sediment particles. Pedosphere 21:676–684

    Article  CAS  Google Scholar 

  • Zhao YG, Xu MX (2013) Runoff and soil loss from revegetated grasslands in the hilly Loess Plateau region, China: influence of biocrust patches and plant canopies. J Hydrol Eng 18:387–393

    Article  Google Scholar 

  • Zhao YG, Xu MX, Wang QJ, Shao MA (2006) Impact of biological soil crust on soil physical and chemical properties of rehabilitated grassland in hlly Loess Plateau. China J Nat Resour 21:441–448

    Google Scholar 

  • Zhao YG, Qin NQ, Weber B, Xu MX (2014) Response of biological soil crusts to raindrop erosivity and underlying influences in the hilly Loess Plateau region, China. Biodivers Conserv 23:1669–1686

    Article  Google Scholar 

  • Zhou ZC, Gan ZT, Shangguan ZP, Dong ZB (2010) Effects of grazing on soil physical properties and soil erodibility in semiarid grassland of the Northern Loess Plateau (China). Catena 82:87–91

    Article  Google Scholar 

Download references

Acknowledgements

We also express our gratitude to the anonymous reviewers and editors for their constructive comments and suggestions.

Funding

This research was supported by the National Natural Science Foundation of China (grant nos. 41830758, 41571268) and China Postdoctoral Science Foundation (grant no. 2018M643754).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunge Zhao.

Additional information

Responsible editor: Saskia D. Keesstra

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, L., Sun, H., Xu, M. et al. Biocrusts resist runoff erosion through direct physical protection and indirect modification of soil properties. J Soils Sediments 20, 133–142 (2020). https://doi.org/10.1007/s11368-019-02372-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-019-02372-w

Keywords

Navigation