Skip to main content
Log in

Distribution, risk assessment, and source analysis of heavy metals in sediment of rivers located in the hilly area of southern China

  • Sediments, Sec 1 • Sediment Quality and Impact Assessment • Research Article
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

River sediment, the important sink and source of heavy metals, can provide critical information for aquatic ecosystem health. Heavy metal pollution has been a serious problem facing river systems worldwide and can adversely affect human beings via the food chain. However, no comprehensive study has been conducted on heavy metal pollution in sediments of river systems in the hilly area of southern China, which plays a key role in water supply and ecosystem balance. This study is aimed at comprehensively studying the pollution status of heavy metals in river sediments in the hilly area of southern China and apportioning sources.

Materials and methods

A total of 39 superficial sediment samples were collected from the upstream, midstream, and downstream of 13 rivers (Xiangjiang River, Zishui River, Yuanjiang River, and Lishui River located in Hunan Province; Ganjiang River, Xinjiang River, Fuhe River, Raohe River), and Xiushui River located in Jiangxi Province; Qiantangjiang River and Oujiang River located in Zhejiang Province; Minjiang River and Jiulongjiang River located in Fujian Province) in the hilly area of southern China. The total concentrations of metals of Mn, Zn, Cr, Co, Ni, Cu, As, Cd, Sb, Pb, and V were analyzed using the inductively coupled plasma-mass spectrometry method. The pollution status and potential ecological risk were assessed with the geoaccumulation index (Igeo), sediment quality guidelines (SQGs), and potential ecological risk index (RI). The source apportionment of heavy metals was performed by correlation analysis and principle component analysis (PCA).

Results and discussion

Results indicated that Mn, Zn, and Pb concentrations were significantly higher than other metals, especially in the upstream of the Jiulong River and midstream and downstream of the Xiangjiang River. Pollution assessment indicated that Cd pollution of sediments was most serious and that more than 50% of sampling sites were significantly polluted, with a very high potential ecological risk. The rivers in Hunan provinces (HN) were identified as the priority controlled rivers because of the high Igeo and RI index values. Correlation and PCA analysis indicated that Mn, Pb, and Zn originated from natural and mineral exploitation activities; As, V, Ni, and Sb originated from industrial wastewater and mineral-smelting activities; Cu and Co originated from agricultural activities; Cr and Ni originated from natural sources. While the most polluted Cd came from a combination of multiple sources described above.

Conclusions

Results indicated that Cd was the most common heavy metal pollutant, especially in river sediments of Hunan Province. Anthropogenic activities have become the main source of heavy metals in the river sediments of the hilly area of southern China. Special attention should be paid to Cd, and measures must be taken to prevent from further anthropogenic influence on heavy metal pollution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • CAEPA (Environmental Protection Administration of China) (2002) Environmental quality standards for soils of China, P.R. China

  • Chai L, Li H, Yang Z, Min X, Liao Q, Liu Y, Men S, Yan Y, Xu J (2017) Heavy metals and metalloids in the surface sediments of the Xiangjiang River, Hunan, China: distribution, contamination, and ecological risk assessment. Environ Sci Pollut Res 24:874–885

    CAS  Google Scholar 

  • Chen B, Liu J, Qiu JD, Zhang XL, Wang S, Liu JQ (2017) Spatio-temporal distribution and environmental risk of sedimentary heavy metals in the Yangtze River estuary and its adjacent areas. Mar Pollut Bull 116:469–478

    CAS  Google Scholar 

  • Chung SY, Venkatramanan S, Park N, Ramkumar T, Sujitha SB, Jonathan MP (2016) Evaluation of physico-chemical parameters in water and total heavy metals in sediments at Nakdong River basin. Korea Environ Earth Sci 75:1–12

    CAS  Google Scholar 

  • Dai LJ, Wang LQ, Li LF, Liang T, Zhang YY, Ma CX, Xing BS (2018) Multivariate geostatistical analysis and source identification of heavy metals in the sediment of Poyang Lake in China. Sci Total Environ 621:1433–1444

    CAS  Google Scholar 

  • Duodu GO, Goonetilleke A, Ayoko GA (2016) Comparison of pollution indices for the assessment of heavy metal in Brisbane River sediment. Environ Pollut 219:1077–1091

    CAS  Google Scholar 

  • Fan XS, Luo H (2013) Spatial and industrial distribution pattern of heavy metals emission in industrial waste water. China Environ Sci 33:655–662

    CAS  Google Scholar 

  • Fu J, Zhao CP, Luo YP, Liu CS, Kyzas GZ, Luo Y, Zhao DY, An SQ, Zhu HL (2014) Heavy metals in surface sediments of the Jialu River, China: their relations to environmental factors. J Hazard Mater 270:102–109

    CAS  Google Scholar 

  • Gong XH, Xiao LP, Zhao ZH, Li QY, Feng F, Zhang L, Deng ZY (2018) Spatial variation of polycyclic aromatic hydrocarbons (PAHs) in surface sediments from rivers in hilly regions of Southern China in the wet and dry seasons. Ecotox Environ Safe 156:322–329

    CAS  Google Scholar 

  • Hakanson L (1980) An ecological risk index for aquatic pollution control-a sedimentological approach. Water Res 14:975–1001

    Google Scholar 

  • Han DM, Cheng JP, Hu XF, Jiang ZY, Mo L, Xu H, Ma YN, Chen XJ, Wang HL (2017) Spatial distribution, risk assessment and source identification of heavy metals in sediments of the Yangtze River estuary, China. Mar Pollut Bull 115:141–148

    CAS  Google Scholar 

  • Hasegawa H, Rahman MA, Kitahara K, Itaya Y, Maki T, Ueda K (2010) Seasonal changes of arsenic speciation in lake waters in relation to eutrophication. Sci Tot Environ 408:1684–1690

    CAS  Google Scholar 

  • Hu BQ, Li GG, Li J, Bi JQ, Zhao JT, Bu RY (2013) Spatial distribution and ecotoxicological risk assessment of heavy metals in surface sediments of the southern Bohai Bay, China. Environ Sci Pollut Res 20:4099–4110

    CAS  Google Scholar 

  • Jin SL, Huang YZ, Wang F, Xu F, Wang XL, Gao Z, Hu Y, Qiao M, Li J, Xiang M (2015) Rare earth elements content in farmland soils and crops of the surrounding copper mining and smelting plant in Jiangxi Province and evaluation of its ecological risk. Environ Sci (in Chinese) 36:1060–1068

  • Jorgensen N, Laursen J, Viksna A, Pind N, Holm PE (2005) Multi-elemental EDXRF mapping of polluted soil from former horticultural land. Environ Int 31:43–52

    CAS  Google Scholar 

  • Kaushik A, Kaushik CP, Kansal A, Santosh M, Kumari S (2009) Heavy metal contamination of river Yamuna, Haryana, India: assessment by metal enrichment factor of the sediments. J Hazard Mater 164:265–270

    CAS  Google Scholar 

  • Ke X, Gui S, Huang H, Zhang H, Wang C, Guo W (2017) Ecological risk assessment and source identification for heavy metals in surface sediment from the Liaohe River protected area, China. Chemosphere 175:473–481

    CAS  Google Scholar 

  • Li F, Huang JH, Zeng GM, Yuan XZ, Li XD, Liang J, Wang XY, Tang XJ, Bai B (2013) Spatial risk assessment and sources identification of heavy metals in surface sediments from the Dongting Lake, Middle China. J Geochem Explor 132:75–83

    CAS  Google Scholar 

  • Li ZY, Ma ZW, van der Kuijp TJ, Yuan ZW, Huang L (2014) A review of soil heavy metal pollution from mines in China: pollution and health risk assessment. Sci Total Environ 468(469):843–853

    Google Scholar 

  • Lin CQ, Hu GR, Yu RL, Yang QL, Yu WH (2016) Pollution assessment and source analysis of heavy metals in offshore surface sediments from Jiulong River. China Environ Sci 36:1218–1225

    CAS  Google Scholar 

  • Lin Q, Liu E, Zhang E, Nath B, Shen J, Yuan H, Wang R (2017) Reconstruction of atmospheric trace metals pollution in Southwest China using sediments from a large and deep alpine lake: historical trends, sources and sediment focusing. Sci Total Environ 613-614:331

    Google Scholar 

  • Liu HY, Probst A, Liao BH (2005) Metal contamination of soils and crops affected by the Chenzhou lead/zinc mine spill (Hunan, China). Sci Total Environ 339:153–166

    CAS  Google Scholar 

  • Liu JQ, Yin P, Chen B, Gao F, Song HY, Li MN (2016) Distribution and contamination assessment of heavy metals in surface sediments of the Luanhe River Estuary, northwest of the Bohai Sea. Mar Pollut Bull 109:633–639

    CAS  Google Scholar 

  • MacDonald DD, Ingersoll CG, Berger TA (2000) Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Arch Environ Con Tox 39:20–31

    CAS  Google Scholar 

  • Muller G (1969) Index of geoaccumulation in sediments of the Rhine River. GeoJournal 2:108–118

    Google Scholar 

  • Nawab J, Khan S, Wang X (2018) Ecological and health risk assessment of potentially toxic elements in the major rivers of Pakistan: general population vs. Fishermen. Chemosphere 202:154–164

    CAS  Google Scholar 

  • Rodríguez Martín JA, Arias ML, Grau Corbí JM (2006) Heavy metals contents in agricultural topsoils in the Ebro basin (Spain). Application of the multivariate geoestatistical methods to study spatial variations. Environ Pollut 144:1001–1012

    Google Scholar 

  • Schneider L, Mariani M, Saunders KM, Maher WA, Harrison JJ, Fletcher M, Zawadzki A, Heijnis H, Haberle SG (2019) How significant is atmospheric metal contamination from mining activity adjacent to the Tasmanian Wilderness World Heritage Area? A spatial analysis of metal concentrations using air trajectories models. Sci Total Environ 656:250–260

    CAS  Google Scholar 

  • Sun ZH, Xie XD, Wang P, Hu YA, Cheng HF (2018) Heavy metal pollution caused by small-scale metal ore mining activities: a case study from a polymetallic mine in South China. Sci Total Environ 639:217–227

    CAS  Google Scholar 

  • Suthar S, Nema AK, Chabukdhara M, Gupta SK (2009) Assessment of metals in water and sediments of Hindon River, India: impact of industrial and urban discharges. Sci Total Environ 171:1088–1095

    CAS  Google Scholar 

  • Taylor SR, Mclennan SM (1985) The continental crust: its composition and evolution. An examination of the geochemical record preserved in sedimentary rocks. J. Geol 94: 632–633

  • Ten Hulscher TEM, Mol GAJ, Lüers F (1992) Release of metals from polluted sediments in a shallow lake: quantifying resuspension. Hydrobiologia 235(236):97–105

    Google Scholar 

  • Tong FP, Xu YP, Long YZ, Yi JX, Song QG, Yi AQ, Shi WF, Li G, Dong XH (2008) Appraisal for environmental quality of forestry soil polluted by heavy metals in antimony mine of Leng-Shuijiang City. Chin Agric Sci Bull 12:179–183

    Google Scholar 

  • USEPA (2006) EPA Region III BTAG Freshwater Sediment Screening Benchmarks. Washington, DC, USA. https://www.epa.gov/risk/freshwater-sediment-screening-benchmarks

  • Wang X, Zhang L, Zhao Z, Cai Y (2018) Heavy metal pollution in reservoirs in the hilly area of southern China: distribution, source apportionment and health risk assessment. Sci Total Environ 634:158–169

    CAS  Google Scholar 

  • Wu FT, Zhu HY, Guo J, Lei YN (2013) Assessment of heavy metal levels in sediment of the Xiangjiang River section flowing through Changsha. Appl Mech Mater 368-370:482–485

    Google Scholar 

  • Xiao Y, Peng B, Yang ZX, Xie WC, Fang XH, Zeng DZ (2017) Speciation of heavy metals in riverbed sediments of heavy pollution section of the lowermost of the Xiangjiang River. Environ Sci (in Chinese) 36:1977–1986

    CAS  Google Scholar 

  • Xu YH, Sun QQ, Yi L, Yin XJ, Wang AJ, Li YH, Chen J (2014) The source of natural and anthropogenic heavy metals in the sediments of the Minjiang River Estuary (SE China): implications for historical pollution. Sci Total Environ 493:729–736

    CAS  Google Scholar 

  • Xu YF, Wu Y, Han JG, Li PP (2017) The current status of heavy metal in lake sediments from China: pollution and ecological risk assessment. Ecol Evol 7:5454–5466

    Google Scholar 

  • Yan N, Liu WB, Xie HT, Gao LR, Han Y, Wang MJ, Li HF (2016) Distribution and assessment of heavy metals in the surface sediment of Yellow River, China. J Environ Sci 39:45–51

    CAS  Google Scholar 

  • Yang ZF, Wang Y, Shen ZY, Niu JF, Tang ZW (2009) Distribution and speciation of heavy metals in sediments from the mainstream, tributaries, and lakes of the Yangtze River catchment of Wuhan, China. J Hazard Mater 166:1186–1194

    CAS  Google Scholar 

  • Yang B, Zhou M, Shu WS, Lan CY, Ye ZH, Qiu RL, Jie YC, Cui GX, Wong MH (2010) Constitutional tolerance to heavy metals of a fiber crop, ramie (Boehmeria nivea), and its potential usage. Environ Pollut 158:551–558

    CAS  Google Scholar 

  • Yang SX, Yuan ZZ, Li ZY, Long H, Tang WJ (2012) Heavy metal contamination and bioavailability in Huayuan manganese and lead/zinc mineland, Xiangxi. Environ Sci (in Chinese) 33:1718–1724

    CAS  Google Scholar 

  • Yu C, Zhang J, Wu L, Liu YZ, Ge G (2015) Effects of heavy metal and nutrients on benthic microbial communities in freshwater sediment of Poyang Lake (China). J Residuals Sci Tech 12:105–111

    Google Scholar 

  • Zahra A, Hashmi MZ, Malik RN, Ahmed Z (2014) Enrichment and geo-accumulation of heavy metals and risk assessment of sediments of the Kurang Nallah—feeding tributary of the Rawal Lake reservoir, Pakistan. Sci Total Environ 470-471:925–933

    CAS  Google Scholar 

  • Zhang C, Yu Z, Zeng G, Jiang M, Yang Z, Cui F, Zhu M, Shen L, Hu L (2014) Effects of sediment geochemical properties on heavy metal bioavailability. Environ Int 73:270–281

    CAS  Google Scholar 

  • Zhang ZX, Lu Y, Li HP, Tu Y, Liu BY, Yang ZG (2018) Assessment of heavy metal contamination, distribution and source identification in the sediments from the Zijiang River. China Sci Total Environ 645:235–243

    CAS  Google Scholar 

  • Zhao GM, Ye SY, Yuan HM, Ding XG, Wang J (2017) Surface sediment properties and heavy metal pollution assessment in the Pearl River Estuary, China. Environ Sci Pollut Res 24:2966–2979

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA19050502) and STS (Science and Technology Service Network Initiative) Project of the Chinese Academy of Sciences (KFJ-STS-ZDTP-011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaolong Wang.

Additional information

Responsible editor: Shiming Ding

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 528 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, J., Xu, L., Zheng, L. et al. Distribution, risk assessment, and source analysis of heavy metals in sediment of rivers located in the hilly area of southern China. J Soils Sediments 19, 3608–3619 (2019). https://doi.org/10.1007/s11368-019-02341-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-019-02341-3

Keywords

Navigation