Skip to main content
Log in

Effects of cobalt oxide nanomaterial on plants and soil invertebrates at different levels of biological organization

  • Soils, Sec 4 • Ecotoxicology • Research Article
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

Metallic nanomaterials (MNM) like cobalt oxide (nano-Co3O4) are currently attracting enormous interest owing to their unique size and shape-dependent properties and potential applications in various sectors. The aims of this study were to assess the toxicity of nano-Co3O4 and to propose a risk limit through the estimation of a Predicted No Effect Concentration (PNEC) for this MNM to soil biota.

Materials and methods

For this purpose, a battery of sub-lethal ecotoxicological tests was performed to assess the influence of this MNM on four plant species (endpoints: germination and growth) and two invertebrate species (endpoints: avoidance and reproduction) following standard protocols. Further, biochemical endpoints (acetylcholinesterase [AChE], catalase [CAT], glutathione-S-transferase [GST] activity, and lipid peroxidation [LPO]) were also assessed in Eisenia andrei, one of the invertebrate species tested, in order to contribute for refining the PNEC value.

Results and discussion

The recorded data showed a significant inhibition in the germination of L. lycopersicum and in the growth of Z. mays, even at the lowest concentration tested (269.3 mg kg−1 soildw of nano-Co3O4). Concerning the soil invertebrates, the results showed only significant avoidance (p < 0.05) by E. andrei in the soil contaminated with the highest concentration tested (1000 mg kg−1 soildw of nano-Co3O4), while no significant ecotoxicological effect on reproductive outputs of both species was recorded. However, the data reported for AChE, CAT, GST, and LPO showed significant effects at the range of concentrations tested in E. andrei. Thus, we recorded, the occurrence of oxidative stress and the enhancement of lipid peroxidation, on this invertebrate species.

Conclusions

The data obtained in this study supports the proposal of a PNEC value of 9.1 mg kg−1 soildw for nano-Co3O4 in soil. The integration of data from biochemical endpoints allowed the refinement of the PNEC value and to obtain a more protective threshold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    CAS  Google Scholar 

  • Andersen CP, King G, Plocher M, Storm M, Pokhrel LR, Johnson MG, Rygiewicz PT (2016) Germination and early plant development of ten plant species exposed to titanium dioxide and cerium oxide nanoparticles. Environ Toxicol Chem 35:2223–2229

    Article  CAS  Google Scholar 

  • Ando M, Kobayashi T, Iijima S, Haruta M (1997) Optical recognition of CO and H2 by use of gas-sensitive Au-Co3O4 composite films. J Mater Chem 7:1779–1783

    Article  CAS  Google Scholar 

  • Antisari LV, Laudicina VA, Gatti A et al (2014) Soil microbial biomass carbon and fatty acid composition of earthworm Lumbricus rubellus after exposure to engineered nanoparticles. Biol Fertil Soils 51:261–269

    Article  CAS  Google Scholar 

  • Asli S, Neumann PM (2009) Colloidal suspensions of clay or titanium dioxide nanoparticles can inhibit leaf growth and transpiration via physical effects on root water transport. Plant Cell Environ 32:577–584

    Article  CAS  Google Scholar 

  • Bakkaus E, Gouget B, Gallien JP, Khodja H, Carrot F, Morel JL, Collins R (2005) Concentration and distribution of cobalt in higher plants: the use of micro-PIXE spectroscopy. Nucl Instrum Methods Phys Res B 231:350–356

    Article  CAS  Google Scholar 

  • Baskar V, Nayeem S, Kuppuraj SP et al (2018) Assessment of the effects of metal oxide nanoparticles on the growth, physiology and metabolic responses in in vitro grown eggplant (Solanum melongena). 3 Biotech 8:362

    Article  Google Scholar 

  • Bouguerra S, Gavina A, Ksibi M, da Graça Rasteiro M, Rocha-Santos T, Pereira R (2016) Ecotoxicity of titanium silicon oxide (TiSiO4) nanomaterial for terrestrial plants and soil invertebrate species. Ecotoxicol Environ Saf 129:291–301

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Brami C, Glover AR, Butt KR, Lowe CN (2017) Effects of silver nanoparticles on survival, biomass change and avoidance behaviour of the endogeic earthworm Allolobophora chlorotica. Ecotoxicol Environ Saf 141:64–69

    Article  CAS  Google Scholar 

  • Buege JA, Aust SD (1978) Microsomal lipid peroxidation. Methods Enzymol 52:302–310

    Article  CAS  Google Scholar 

  • Calcagnile P, Italiano I, Anyfantis GC et al (2012) Magnetically driven floating foams for the removal of oil contaminants from water. ACS Nano:5413–5419

  • Cañas JE, Qi B, Li S, Maul JD, Cox SB, Das S, Green MJ (2011) Acute and reproductive toxicity of nano-sized metal oxides (ZnO and TiO2) to earthworms (Eisenia fetida). J Environ Monit 13:3351–3357

    Article  CAS  Google Scholar 

  • Carpita N, Sabularse D, Montezinos D, Delmer DP (1979) Determination of the pore size of cell walls of living plant cells. Science 205:1144–1147

    Article  CAS  Google Scholar 

  • Castiglione MR, Giorgetti L, Geri C, Cremonini R (2011) The effects of nano-TiO2 on seed germination, development and mitosis of root tip cells of Vicia narbonensis L. and Zea mays L. J Nanopart Res 13:2443–2449

    Article  CAS  Google Scholar 

  • Chaney R (1983) Plant uptake of inorganic waste constituents. In: Parr J (ed) land treatment of hazardous wastes. Noyes Data Corporation, Park Ridge, pp 50–76

    Google Scholar 

  • Chatterjee J, Chatterjee C (2000) Phytotoxicity of cobalt, chromium and copper in cauliflower. Environ Pollut 109:69–74

    Article  CAS  Google Scholar 

  • Chen G, Vijver MG, Peijnenburg WJGM (2015) Summary and analysis of the currently existing literature data on metal-based nanoparticles published for selected aquatic organisms: applicability for toxicity prediction by (Q) SARs. Altern Lab Anim 43:221–240

    Article  Google Scholar 

  • Coleman JG, Johnson DR, Stanley JK, Bednar AJ, Weiss CA Jr, Boyd RE, Steevens JA (2010) Assessing the fate and effects of nano aluminum oxide in the terrestrial earthworm, Eisenia fetida. Environ Toxicol Chem 29:1575–1580

    Article  CAS  Google Scholar 

  • Colognato R, Bonelli A, Ponti J, Farina M, Bergamaschi E, Sabbioni E, Migliore L (2008) Comparative genotoxicity of cobalt nanoparticles and ions on human peripheral leukocytes in vitro. Mutagenesis 23:377–382

    Article  CAS  Google Scholar 

  • Coutris C, Hertel-Aas T, Lapied E, Joner EJ, Oughton DH (2012) Bioavailability of cobalt and silver nanoparticles to the earthworm Eisenia fetida. Nanotoxicology 6:186–195

    Article  CAS  Google Scholar 

  • Cundy AB, Hopkinson L, Whitby RLD (2008) Use of iron-based technologies in contaminated land and groundwater remediation: a review. Sci Total Environ 400:42–51

    Article  CAS  Google Scholar 

  • Da Costa JP, Santos PSM, Duarte AC, Rocha-Santos T (2016) (Nano)plastics in the environment—sources, fates and effects. Sci Total Environ 566–567:15–26

    Article  CAS  Google Scholar 

  • De la Rosa G, García-Castañeda C, Vázquez-Núñez E et al (2017) Physiological and biochemical response of plants to engineered NMs: implications on future design. Plant Physiol Biochem 110:226–235

    Article  CAS  Google Scholar 

  • Deng Y, White JC, Xing B (2014) Interactions between engineered nanomaterials and agricultural crops: implications for food safety. J Zhejiang Univ Sci A 15:552–572

    Article  CAS  Google Scholar 

  • Dietz KJ, Herth S (2011) Plant nanotoxicology. Trends Plant Sci 16:582–589

    Article  CAS  Google Scholar 

  • Du W, Tan W, Peralta-Videa JR et al (2016) Interaction of metal oxide nanoparticles with higher terrestrial plants: physiological and biochemical aspects. Plant Physiol Biochem 110:210–225

    Article  CAS  Google Scholar 

  • EC (2003) Technical guidance document on risk assessment in support of Commission Directive 93/67/ EEC on risk assessment for new notified substances and Commission Regulation (EC) No. 1488/94 on risk assessment for existing substances. Part II. EUR 20418 EN/2

  • Ellman GL, Courtney KD, Andres V, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    Article  CAS  Google Scholar 

  • El-Temsah YS, Joner EJ (2010) Impact of Fe and Ag nanoparticles on seed germination and differences in bioavailability during exposure in aqueous suspension and soil. Environ Toxicol 27:42–49

    Article  CAS  Google Scholar 

  • Fu L, Liu ZM, Liu YQ, Han B, Hu P, Cao L, Zhu D (2005) Beaded cobalt oxide nanoparticles along carbon nanotubes: towards more highly integrated electronic devices. Adv Mater 17:217–221

    Article  CAS  Google Scholar 

  • Garcia-Velasco N, Peña-Cearra A, Bilbao E, Zaldibar B, Soto M (2017) Integrative assessment of the effects produced by Ag nanoparticles at different levels of biological complexity in Eisenia fetida maintained in two standard soils (OECD and LUFA 2.3). Chemosphere 181:747–758

    Article  CAS  Google Scholar 

  • Gardea-Torresdey JL, Rico CM, White JC (2014) Trophic transfer, transformation, and impact of engineered nanomaterials in terrestrial environments. Environ Sci Technol 48:2526–2540

    Article  CAS  Google Scholar 

  • Gavina A, Bouguerra S, Lopes I, Marques CR, Rasteiro MG, Antunes F, Rocha-Santos T, Pereira R (2016) Impact of organic nano-vesicles in soil: the case of sodium dodecyl sulphate/didodecyl dimethylammonium bromide. Sci Total Environ 547:413–421

    Article  CAS  Google Scholar 

  • Ghodake G, Seo YD, Lee DS (2011) Hazardous phytotoxic nature of cobalt and zinc oxide nanoparticles assessed using Allium cepa. J Hazard Mater 186:952–955

    Article  CAS  Google Scholar 

  • Gomes SIL, Caputo G, Pinna N, Scott-Fordsmand JJ, Amorim MJB (2015a) Effect of 10 different TiO2 and ZrO2 (nano)materials on the soil invertebrate Enchytraeus crypticus. Environ Toxicol Chem 34:2409–2416

    Article  CAS  Google Scholar 

  • Gomes SIL, Hansen D, Scott-Fordsmand JJ, Amorim MJB (2015b) Effects of silver nanoparticles to soil invertebrates: oxidative stress biomarkers in Eisenia fetida. Environ Pollut 199:49–55

    Article  CAS  Google Scholar 

  • Gomes AR, Justino C, Rocha-Santos T, Freitas AC, Duarte AC, Pereira R (2017) Review of the ecotoxicological effects of emerging contaminants to soil biota. J Environ Sci Health A 52:992–1007

    Article  CAS  Google Scholar 

  • Griffitt RJ, Luo J, Gao J, Bonzongo JC, Barber DS (2008) Effects of particle composition and species on toxicity of metallic nanomaterials in aquatic organisms. Environ Toxicol Chem 27:1972–1978

    Article  CAS  Google Scholar 

  • Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-transferases. The first step in mercapturic acid formation. J Biol Chem 249:7130–7139

    CAS  Google Scholar 

  • Hatami M, Ghorbanpour M, Salehiarjomand H (2014) Nano-anatase TiO2 modulates the germination behavior and seedling vigority of some commercially important medicinal and aromatic plants. J Biol Environ Sci 8:53–59

    Google Scholar 

  • He X, Fu P, Aker WG, Hwang HM (2018) Toxicity of engineered nanomaterials mediated by nano–bio–eco interactions. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 36:21–42

    Article  CAS  Google Scholar 

  • Heckmann LH, Hovgaard MB, Sutherland DS, Autrup H, Besenbacher F, Scott-Fordsmand JJ (2011) Limit-test toxicity screening of selected inorganic nanoparticles to the earthworm Eisenia fetida. Ecotoxicology 20:226–233

    Article  CAS  Google Scholar 

  • Hu CW, Li M, Cui YB, Li DS, Chen J, Yang LY (2010) Toxicological effects of TiO2 and ZnO nanoparticles in soil on earthworm Eisenia fetida. Soil Biol Biochem 42:586–591

    Article  CAS  Google Scholar 

  • Hund-Rinke K, Wiechering H (2001) Earthworm avoidance test for soil assessments. J Soils Sediments 1:15–20

    Article  CAS  Google Scholar 

  • ISO (2008) International Organization for Standardization Guideline 17512-1: soil quality—avoidance test for determining the quality of soils and effects of chemicals on behaviour—part 1: test with earthworms (Eisenia fetida and Eisenia andrei). Geneve, Switzerland

  • ISO (2011) International Organization for Standardization Guideline 17512-2: soil quality—avoidance test for determining the quality of soils and effects of chemicals on behaviour—part 2: test with collembolans (Folsomia candida). Geneve, Switzerland

  • ISO (2012a) International Organization for Standardization Guideline 11269-2: soil quality—determination of the effects of pollutants on soil flora—part 2: effects of contaminated soil on the emergence and early growth of higher plants. Geneve, Switzerland

  • ISO (2012b) International Organization for Standardization Guideline 11268-2: soil quality—effects of pollutants on earthworms—part 2: determination of effects on reproduction of Eisenia fetida / Eisenia andrei. Geneve, Switzerland

  • ISO (2014) International Organization for Standardization Guideline 11267: soil quality—inhibition of reproduction of collembola (Folsomia candida) by soil contaminants. Geneva, Switzerland

  • Ito A, Shinkai M, Honda H, Kobayashi T (2005) Medical application of functionalized magnetic nanoparticles. J Biosci Bioeng 100:1–11

    Article  CAS  Google Scholar 

  • Jahan S, Alias YB, Bakar AFBA, Bin YI (2018) Toxicity evaluation of ZnO and TiO2 nanomaterials in hydroponic red bean (Vigna angularis) plant: physiology, biochemistry and kinetic transport. J Environ Sci 72:140–152

    Article  Google Scholar 

  • Jamal A, Rahman MM, Khan SB, Faisal M, Akhtar K, Rub MA, Asiri AM, al-Youbi AO (2012) Cobalt doped antimony oxide nano-particles based chemical sensor and photo-catalyst for environmental pollutants. Appl Surf Sci 261:52–58

    Article  CAS  Google Scholar 

  • Jesmer AH, Velicogna JR, Schwertfeger DM, Scroggins RP, Princz JI (2017) The toxicity of silver to soil organisms exposed to silver nanoparticles and silver nitrate in biosolids-amended field soil. Environ Toxicol Chem 36:2756–2765

    Article  CAS  Google Scholar 

  • Jiang H, Liu F, Yang H, Li Y (2012) Effects of cobalt nanoparticles on human T cells in vitro. Biol Trace Elem Res 146:23–29

    Article  CAS  Google Scholar 

  • Kahru A, Dubourguier HC, Blinova I, Ivask A, Kasemets K (2008) Biotests and biosensors for ecotoxicology of metal oxide nanoparticles: a minireview. Sensors 8:5153–5170

    Article  CAS  Google Scholar 

  • Karami H (2013) Heavy metal removal from water by magnetite nanorods. Chem Eng J 219:209–216

    Article  CAS  Google Scholar 

  • Keeling SM, Stewart RB, Anderson CW, Robinson BH (2003) Nickel and cobalt phytoextraction by the hyperaccumulator Berkheya coddii: implications for polymetallic phytomining and phytoremediation. Int J Phytoremediation 5:235–244

    Article  CAS  Google Scholar 

  • Kim D, Zhang Y, Voit W et al (2001) Superparamagnetic iron oxide nanoparticles for bio-medical applications. Scr Mater 44:1713–1717

    Article  CAS  Google Scholar 

  • Kool PL, Ortiz MD, Van Gestel CAM (2011) Chronic toxicity of ZnO nanoparticles, non-nano ZnO and ZnCl2 to Folsomia candida (Collembola) in relation to bioavailability in soil. Environ Pollut 159:2713–2719

    Article  CAS  Google Scholar 

  • Kwon Y-M, Xia Z, Glyn-Jones S, Beard D, Gill HS, Murray DW (2009) Dose-dependent cytotoxicity of clinically relevant cobalt nanoparticles and ions on macrophages in vitro. Biomed Mater 4:25018

    Article  CAS  Google Scholar 

  • Lachance B, Hamzeh M, Sunahara GI (2013) Environmental fate and ecotoxicology of nanomaterials. In: Malsch I, Emond C (eds) Nanotechnology and human health. CRC Press Taylor & Francis Group, Boca Raton, pp 209–231

    Google Scholar 

  • Laconte L, Nitin N, Bao G (2005) Magnetic nanoparticle probes. Mater Today 8:32–38

    Article  Google Scholar 

  • Laurent S, Boutry SMR, Muller RN (2018) Metal oxide particles and their prospects for applications. In: Mahmoudi M, Laurent S (ed) Iron oxide nanoparticles for biomedical applications. Elsevier Ltd., pp 3–42

  • Lee CW, Mahendra S, Zodrow K, Li D, Tsai YC, Braam J, Alvarez PJJ (2010) Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis thaliana. Environ Toxicol Chem 29:669–675

    Article  CAS  Google Scholar 

  • Li HF, Gray C, Mico C, Zhao FJ, McGrath SP (2009) Phytotoxicity and bioavailability of cobalt to plants in a range of soils. Chemosphere 75:979–986

    Article  CAS  Google Scholar 

  • Liang J, Xia X, Zhang W, Zaman WQ, Lin K, Hu S, Lin Z (2017) The biochemical and toxicological responses of earthworm (Eisenia fetida) following exposure to nanoscale zerovalent iron in a soil system. Environ Sci Pollut Res 24:2507–2514

    Article  CAS  Google Scholar 

  • Lin D, Xing B (2007) Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut 150:243–250

    Article  CAS  Google Scholar 

  • Liu X, Qiu G, Li X (2005) Shape-controlled synthesis and properties of uniform spinel cobalt oxide nanocubes. Nanotechnology 16:3035–3040

    Article  CAS  Google Scholar 

  • Liu X, Zhang S, Quan SX, Christie P (2007) Combined toxicity of cadmium and arsenate to wheat seedlings and plant uptake and antioxidative enzyme responses to cadmium and arsenate co-contamination. Ecotoxicol Environ Saf 68:305–313

    Article  CAS  Google Scholar 

  • Lock K, Becaus S, Criel P, van Eeckhout H, Janssen CR (2004) Ecotoxicity of cobalt to the springtail Folsomia candida. Comp Biochem Physiol C Toxicol Pharmacol 139:195–199

    Article  CAS  Google Scholar 

  • Lowry GV, Gregory KB, Apte SC, Lead JR (2012) Guest comment: transformations of nanomaterials in the environment focus issue. Environ Sci Technol 46:6891–6892

    Article  CAS  Google Scholar 

  • Lu F, Astruc D (2018) Nanomaterials for removal of toxic elements from water. Coord Chem Rev 356:147–164

    Article  CAS  Google Scholar 

  • Ma X, Geiser-lee J, Deng Y, Kolmakov A (2010a) Interactions between engineered nanoparticles (ENPs) and plants: phytotoxicity, uptake and accumulation. Sci Total Environ 408:3053–3061

    Article  CAS  Google Scholar 

  • Ma Y, Kuang L, He X, Bai W, Ding Y, Zhang Z, Zhao Y, Chai Z (2010b) Effects of rare earth oxide nanoparticles on root elongation of plants. Chemosphere 78:273–279

    Article  CAS  Google Scholar 

  • Malvern ZetaSizer (2013) Malvern Zetasizer SZ nano series user manual. mano 485, 1.1. United Kingdom

  • Man L, Niu B, Xu H, Cao B, Wang J (2011) Microwave hydrothermal synthesis of nanoporous cobalt oxides and their gas sensing properties. Mater Res Bull 46:1097–1101

    Article  CAS  Google Scholar 

  • Maurer-Jones MA, Gunsolus IL, Murphy CJ, Haynes CL (2013) Toxicity of engineered nanoparticles in the environment. Anal Chem 85:3036–3049

    Article  CAS  Google Scholar 

  • McShane H, Sarrazin M, Whalen JK, Hendershot WH, Sunahara GI (2012) Reproductive and behavioral responses of earthworms exposed to nano-sized titanium dioxide in soil. Environ Toxicol Chem 31:184–193

    Article  CAS  Google Scholar 

  • Nair PMG, Chung IM (2014) Impact of copper oxide nanoparticles exposure on Arabidopsis thaliana growth, root system development, root lignificaion, and molecular level changes. Environ Sci Pollut Res 21:12709–12722

    Article  CAS  Google Scholar 

  • NanoComposix (2015) Guidelines for dynamic light scattering measurement and analysis, available at: https://cdn.shopify.com/s/files/1/0257/8237/files/nanoComposix_Guidelines_for_DLS_Measurements_and_Analysis.pdf

  • Nowack B, Ranville JF, Diamond S, Gallego-Urrea JA, Metcalfe C, Rose J, Horne N, Koelmans AA, Klaine SJ (2012) Potential scenarios for nanomaterial release and subsequent alteration in the environment. Environ Toxicol Chem 31:50–59. https://doi.org/10.1002/etc.726

    Article  CAS  Google Scholar 

  • Nowack B, Bornhöft N, Ding Y, Riediker M, Jiménez AS, Sun T, van Tongeren M, Wohlleben W (2015) The flows of engineered nanomaterials from production, use, and disposal to the environment. In: Viana M (ed) Indoor and outdoor nanoparticles, determinants of release and exposure scenarios. Springer International Publishing, Cham, pp 209–231

    Chapter  Google Scholar 

  • OECD (1984) Organization for Economic Cooperation and Development. Terrestrial plants, growth test. Guideline for testing of chemicals. 208. Paris, France www.oecd.org/chemicalsafety/testing/33653757.pdf

  • Pandey BK, Shahi AK, Srivastava N, Kumar G, Gopal R (2015) Synthesis and cytogenetic effect of magnetic nanoparticles. Adv Mater Lett 6:954–960

    Article  CAS  Google Scholar 

  • Pankhurst QA, Connolly J, Jones SK, Dobson J (2003) Applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys 36:R167–R181

    Article  CAS  Google Scholar 

  • Papis E, Rossi F, Raspanti M, Dalle-Donne I, Colombo G, Milzani A, Bernardini G, Gornati R (2009) Engineered cobalt oxide nanoparticles readily enter cells. Toxicol Lett 189:253–259

    Article  CAS  Google Scholar 

  • Parkes LM, Hodgson R, Lu LT, Tung LD, Robinson I, Fernig DG, Thanh NTK (2008) Cobalt nanoparticles as a novel magnetic resonance contrast agent—relaxivities at 1.5 and 3 Tesla. Contrast Media Mol Imaging 3:150–156

    Article  CAS  Google Scholar 

  • Ponti J, Sabbioni E, Munaro B, Broggi F, Marmorato P, Franchini F, Colognato R, Rossi F (2009) Genotoxicity and morphological transformation induced by cobalt nanoparticles and cobalt chloride: an in vitro study in Balb/3T3 mouse fibroblasts. Mutagenesis 24:439–445

    Article  CAS  Google Scholar 

  • Pulicharla R, Brar SK, Verma M et al (2015) Behavior and fate of natural and engineered nanomaterials in soils. In: Brar SK, Zhang TC, Verma M et al (eds) Nanomaterials in the environment. American Society of Civil Engineers, Reston, pp 291–314

    Chapter  Google Scholar 

  • Rajput VD, Minkina T, Sushkova S, Tsitsuashvili V, Mandzhieva S, Gorovtsov A, Nevidomskyaya D, Gromakova N (2018a) Effect of nanoparticles on crops and soil microbial communities. J Soils Sediments 18:2179–2187

    Article  CAS  Google Scholar 

  • Rajput VD, Minkina T, Suskova S, Mandzhieva S, Tsitsuashvili V, Chapligin V, Fedorenko A (2018b) Effects of copper nanoparticles (CuO NPs) on crop plants: a mini review. BioNanoScience 8:36–42

    Article  Google Scholar 

  • Rault M, Mazzia C, Capowiez Y (2007) Tissue distribution and characterization of cholinesterase activity in six earthworm species. Comp Biochem Physiol B Biochem Mol Biol 147:340–346

    Article  CAS  Google Scholar 

  • Ray PC, Yu H, Fu PP (2009) Toxicity and environmental risks of nanomaterials: challenges and future needs. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 27:1–35

    Article  CAS  Google Scholar 

  • Rizwan M, Ali S, Qayyum MF et al (2017) Effect of metal and metal oxide nanoparticles on growth and physiology of globally important food crops: a critical review. J Hazard Mater 322:2–16

    Article  CAS  Google Scholar 

  • Rutnakornpituk M, Baranauskas VV, Riffle JS et al (2002) Polysiloxane fluid dispersions of cobalt nanoparticles in silica spheres for use in ophthalmic applications. Eur Cells Mater 3:102–105

    Google Scholar 

  • Serag MF, Kaji N, Habuchi S, Bianco A, Baba Y (2013) Nanobiotechnology meets plant cell biology: carbon nanotubes as organelle targeting nanocarriers. RSC Adv 3:4856

    Article  CAS  Google Scholar 

  • Singh R, Nalwa HS (2011) Medical applications of nanoparticles in biological imaging, cell labeling, antimicrobial agents, and anticancer nanodrugs. J Biomed Nanotechnol 7:489–503

    Article  CAS  Google Scholar 

  • Srivastava N (2015) Interaction of cobalt nanoparticles with plants: a cytogenetical aspect. J Exp Nanosci 10:769–776

    Article  CAS  Google Scholar 

  • Tepfer M, Taylor IE (1981) The permeability of plant cell walls as measured by gel filtration chromatography. Science 213:761–763

    Article  CAS  Google Scholar 

  • Tjong SC, Chen H (2004) Nanocrystalline materials and coatings. Mater Sci Eng R Rep 45:1–88

    Article  CAS  Google Scholar 

  • Trujillo-Reyes J, Peralta-Videa JR, Gardea-Torresdey JL (2014) Supported and unsupported nanomaterials for water and soil remediation: are they a useful solution for worldwide pollution? J Hazard Mater 280:487–503

    Article  CAS  Google Scholar 

  • Wahid F, Khan T, Shehzad A, Ul-Islam M, Kim YY (2014) Interaction of nanomaterials with cells and their medical applications. J Nanosci Nanotechnol 14:744–754

    Article  CAS  Google Scholar 

  • Wang J, Wang W (2014) Significance of physicochemical and uptake kinetics in controlling the toxicity of metallic nanomaterials to aquatic organisms. J Zhejiang Univ A 15:573–592

    Article  CAS  Google Scholar 

  • Wang GX, Chen Y, Konstantinov K, Yao J, Ahn JH, Liu HK, Dou SX (2002) Nanosize cobalt oxides as anode materials for lithium-ion batteries. J Alloys Compd 340:L5–L10

    Article  CAS  Google Scholar 

  • Wang K, Xu JJ, Chen HY (2005) A novel glucose biosensor based on the nanoscaled cobalt phthalocyanine-glucose oxidase biocomposite. Biosens Bioelectron 20:1388–1396

    Article  CAS  Google Scholar 

  • Wang Z, Zhao J, Li F, Gao D, Xing B (2009) Adsorption and inhibition of acetylcholinesterase by different nanoparticles. Chemosphere 77:67–73

    Article  CAS  Google Scholar 

  • Wierzbicka MS, Obidzińska J (1998) The effect of lead on seed imbibition and germination in different plant species. Plant Sci 137:155–171

    Article  CAS  Google Scholar 

  • Wild E, Jones KC (2009) Novel method for the direct visualization of in vivo nanomaterials and chemical interactions in plants. Environ Sci Technol 43:5290–5294

    Article  CAS  Google Scholar 

  • Wu SG, Huang L, Head J et al (2012a) Phytotoxicity of metal oxide nanoparticles is related to both dissolved metals ions and adsorption of particles on seed surfaces. J Pet Environ Biotechnol 3:2–6

    Google Scholar 

  • Wu HB, Chen JS, Hng HH, Lou XWD (2012b) 182 nanostructured metal oxide-based materials as advanced anodes for lithium-ion batteries. Nanoscale 4:2526–2542

    Article  CAS  Google Scholar 

  • Yang L, Watts DJ (2005) Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles. Toxicol Lett 158:122–132

    Article  CAS  Google Scholar 

  • Yang M, Jiang J, Yang Y, Chen X, Shen G, Yu R (2006) Carbon nanotube/cobalt hexacyanoferrate nanoparticle-biopolymer system for the fabrication of biosensors. Biosens Bioelectron 21:1791–1797

    Article  CAS  Google Scholar 

  • Yang Z, Chen J, Dou R, Gao X, Mao C, Wang L (2015) Assessment of the phytotoxicity of metal oxide nanoparticles on two crop plants, maize (Zea mays L.) and rice (Oryza sativa L.). Int J Environ Res Public Health 12:15100–15109

    Article  CAS  Google Scholar 

  • Zhou Z-Y, Tian N, Li J-T, Broadwell I, Sun SG (2011) Nanomaterials of high surface energy with exceptional properties in catalysis and energy storage. Chem Soc Rev 40:4167–4185

    Article  CAS  Google Scholar 

  • Ziccardi L, Mcardle M, Lowney Y (2008) The ecological effects of nanomaterials: a focus on aquatic life. Nano 3:251–255

    Article  CAS  Google Scholar 

Download references

Funding

This research is part of the project REALISE (PTDC/AAC-AMB/120697/2010) funded by the Portuguese Government (Program Ciência – Inovação 2010) and by the European Social Fund – COMPETE. Sirine Bouguerra was supported by an investigator fellowship (Ref. PTDC/AAC-AMB/120697/2010) from the project. Ana Gavina was also supported by a Ph.D. Grant (Ref. SFRH/BD/94902/2013) from FCT – Foundation for Science and Technology. This research was also partially supported by the Strategic Funding UID/Multi/04423/2013 through national funds provided by FCT – Foundation for Science and Technology and European Regional Development Fund (ERDF), in the framework of the programme PT2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sirine Bouguerra.

Ethics declarations

Research involving human participants and/or animals

This article does not contain any studies with human participants or vertebrate animals performed by any of the authors.

Additional information

Responsible editor: Dong-Mei Zhou

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouguerra, S., Gavina, A., da Graça Rasteiro, M. et al. Effects of cobalt oxide nanomaterial on plants and soil invertebrates at different levels of biological organization. J Soils Sediments 19, 3018–3034 (2019). https://doi.org/10.1007/s11368-019-02285-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-019-02285-8

Keywords

Navigation