Skip to main content
Log in

Soil REE patterns as tracers of the emplacement of metal-rich anthropogenic materials. A case study in Moa (Cuba)

  • Soils, Sec 2 • Global Change, Environ Risk Assess, Sustainable Land Use • Short Original Communication
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

Are rare earth element (REE) patterns employable as tracers in human interventions of bulk soil disturbances, when high concentrations of metals are involved in the in situ soil disturbance? In terms of bulk soil disturbance, it is difficult to distinguish between bulk soil disturbances and emplacement of new earthen material. Chemical fingerprinting, in particular REE plus yttrium, is applied across many fields, but predominantlyin tracking the sources of potential environmental contaminants.

Materials and methods

The REE normalised patterns (HNO3:HF:HCl 3:1:1 digestion, ICP-MS) of two Calcaric Cambisols were compared with those of a Geric Ferralsol (Novic, Technic) originated from selective overburden of nickel mining (20°40′ N, 75°35′ W).

Results and discussion

The sum of REE, including Y and Sc, ranged between 48 and 101 mg kg−1. Principal component analysis (PCA) shows a discriminant role of REE. REE signature normalised to the upper continental crust shows slight positive Eu and negative Ce anomalies in the case of both Calcaric Cambisols, while the Geric Ferralsol shows anomalous patterns with the same anomalies plus a slight positive anomaly of Y, as a consequence of the addition of mining by-products.

Conclusions

Here, we show that REE patterns of the individual horizons of a soil have characteristics that allow us to distinguish undisturbed from soils mixed with other soil materials, including those with different pH values and high metal contents (e.g. Cr, Mn, and Ni ≥ 0.5%, Fe ≫ 5 wt%). Our results demonstrate, by using soils with contrasting characteristics, that their origins can be traced via the patterns of their REEs, even in the presence of high concentrations of other metals. In perspective, when background maps of all REE elements in soils are available worldwide on an appropriate scale, this enables us to obtain a level of discriminatory detail on a local scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Aiglsperger T, Proenza JA, Lewis JF, Labrador M, Svojtka M, Rojas-Purón A, Longo F, Ďurišová J (2016) Critical metals (REE, Sc, PGE) in Ni laterites from Cuba and the Dominican Republic. Ore Geol Rev 73:127–147

    Article  Google Scholar 

  • Alfaro MR, Araújo do Nascimento CW, Biondi CM, Agra Bezerra da Silva YJ, Agra Bezerra da Silva YJ, de Aguiar Accioly AM, Montero A, Muñiz Ugarte O, Estevez J (2018) Rare-earth-element geochemistry in soils developed in different geological settings of Cuba. Catena 162:317–324

    Article  CAS  Google Scholar 

  • Becquer T, Quantin C, Sicot M, Boudot JP (2003) Chromium availability in ultramafic soils from New Caledonia. Sci Total Environ 301:251–261

    Article  CAS  Google Scholar 

  • Bethell PH, Ottaway J, Goad LJ, Evershed RP (1994) The study of molecular markers of human activity: the use of coprostanol as an indicator of human faecal material. J Archaeol Sci 21:619–632

    Article  Google Scholar 

  • Bisse J (1988) Árboles de Cuba. Editorial Científico-Técnica, Ciudad de la Habana

    Google Scholar 

  • Bonifacio E, Zanini E, Boero V, Franchini-Angela M (1997) Pedogenesis in a soil catena on serpentine in north-western Italy. Geoderma 75:33–51

    Article  CAS  Google Scholar 

  • Braun JJ, Pagel M, Herbillon A, Rosin C (1993) Mobilization and redistribution of REEs and thorium in a syenitic lateritic profile—a mass-balance study. Geochim Cosmochim Acta 57:4419–4434

    Article  CAS  Google Scholar 

  • Burkhard DJM (1993) Accessory chromium spinels: their coexistence and alteration in serpentinites. Geochim Cosmochim Acta 57:1297–1306

    Article  CAS  Google Scholar 

  • Certini G, Ugolini FC (2013) An updated, expanded, universal definition of soil. Geoderma 192:378–379

    Article  Google Scholar 

  • Chesworth W (1973) The parent rock effect in the genesis of soil. Geoderma 10:215–225

    Article  CAS  Google Scholar 

  • Colin F, Noack Y, Trescases JJ, Nahon D (1985) The initial lateritic weathering of pyroxenites from Jacuba Niquelândia, Brazil. Clay Miner 20:93–113

    Article  CAS  Google Scholar 

  • Escuder-Viruete J, Pérez-Estaún A, Weis D, Friedman R (2010) Geochemical characteristics of the Río Verde Complex, Central Hispaniola: implications for the paleotectonic reconstruction of the Lower Cretaceous Caribbean island-arc. Lithos 114:168–185

    Article  CAS  Google Scholar 

  • FAO (2006) Guidelines for soil description, 4th edn. FAO, Rome

    Google Scholar 

  • Gallello G, Pastor A, Diez A, La Roca N, Bernabeu J (2013) Anthropogenic units fingerprinted by REE in archaeological stratigraphy: Mas d'Is (Spain) case. J Archaeol Sci 40:799–809

    Article  CAS  Google Scholar 

  • Gardi C, Angelini M, Barceló S, Comerma J, Cruz Gaistardo C, Encina Rojas A, Jones A, Krasilnikov P, Mendonça Santos Brefin ML, Montanarella L, Muñiz Ugarte O, Schad P, Vara Rodríguez MI, Vargas R (2014) Atlas de suelos de América Latina y el Caribe, Comisión Europea - Oficina de Publicaciones de la Unión Europea, L-2995 Luxembourg, 176 p

  • Garnier J, Quantin C, Guimarães E, Garg VK, Martins ES, Becquer T (2009) Understanding the genesis of ultramafic soils and catena dynamics in Niquelândia, Brazil. Geoderma 151:204–214

    Article  CAS  Google Scholar 

  • Guénet H, Demangeat E, Davranche M, Vantelon D, Pierson-Wickmann AC, Jardé E, Bouhnik-Le Coz M, Lotfi E, Dia A, Jestin J (2018) Experimental evidence of REE size fraction redistribution during redox variation in wetland soil. Sci Total Environ 631-632:580–588

    Article  CAS  Google Scholar 

  • Guzmán G, Quinton JN, Nearing MA, Mabit L, Gómez JA (2013) Sediment tracers in water erosion studies: current approaches and challenges. J Soils Sediments 13:816–833

    Article  Google Scholar 

  • Henderson P (1984) General geochemical properties and abundances of the rare earth elements. In: Henderson P (ed) Rare earth element geochemistry. Elsevier, Amsterdam, pp 1–29

    Google Scholar 

  • Inagaki K, Ogata T (2013) Reaction of lanthanide elements with Fe–Cr alloy. J Nucl Mater 441:574–578

    Article  CAS  Google Scholar 

  • Iturralde-Vinent MA (1996) Ofiolitas y Arcos Volcanicos de Cuba, IUGS Project 364: Caribbean Ophiolites and Volcanic Arcs, Special Contribution No. 1

  • IUPAC Provisional Recommendations for the Nomenclature of Inorganic Chemistry (2004) Online draft of an updated version of the “Red Book” IR. International Union of Pure and Applied Chemistry by The Royal Society of Chemistry, Cambridge, pp 3–6

    Google Scholar 

  • IUSS Working Group WRB (2015) World Reference Base for Soil Resources 2014, update 2015. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. FAO, Rome

    Google Scholar 

  • Janots E, Bernier F, Brunet F, Muñoz M, Trcera N, Berger A, Lanson M (2015) Ce(III) and Ce(IV) (re)distribution and fractionation in a laterite profile from Madagascar: insights from in situ XANES spectroscopy at the Ce LIII-edge. Geochim Cosmochim Acta 153:134–148

    Article  CAS  Google Scholar 

  • Kamber BS (2009) Geochemical fingerprinting: 40 years of analytical development and real world applications. Appl Geochem 24:1074–1086

    Article  CAS  Google Scholar 

  • Kantipuly CJ, Westland AD (1988) Review of methods for the determination of lanthanides in geological samples. Talanta 35:1–13

    Article  CAS  Google Scholar 

  • Koſodziej B, Bryk M, Sſowiſska-Jurkiewicz A, Otremba K, Gilewska M (2016) Soil physical properties of agriculturally reclaimed area after lignite mine: a case study from central Poland. Soil Tillage Res 163:54–63

    Article  Google Scholar 

  • Kozak M (1996) Estratigrafia del arco volcanico Cretacico en Cuba: Vulcanitas de la region de Holguin, pp 212–217

  • Laveuf C, Cornu S (2009) A review on the potentiality of rare earth elements to trace pedogenetic processes. Geoderma 154:1–12

    Article  CAS  Google Scholar 

  • Liu G, Xiao H, Liu P, Zhang Q, Zhang J (2016) An improved method for tracing soil erosion using rare earth elements. J Soils Sediments 16:1670–1679

    Article  CAS  Google Scholar 

  • Long KR, Gosen BSV, Foley NK, Cordier D (2010) The principal rare earth elements deposits of the United States. U.S. Department of the Interior U.S. Geological Survey

  • Mann CC (2000) Earthmovers of the Amazon. Science 287:786–789

    Article  CAS  Google Scholar 

  • McLennan SM (1989) Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes. Rev Mineral 21:169–200

    CAS  Google Scholar 

  • Mihajlovic J, Giani L, Stärk HJ, Rinklebe J (2014) Concentrations and geochemical fractions of rare earth elements in two different marsh soil profiles at the North Sea, Germany. J Soils Sediments 14:1417–1433

    Article  CAS  Google Scholar 

  • Moraetis D, Paranychianakis NV, Nikolaidis NP, Banwart SA, Rousseva S, Kercheva M, Nenov M, Shishkov T, de Ruiter P, Bloem J, Blum WEH, Lair GJ, van Gaans P, Ver M (2015) Sediment provenance, soil development, and carbon content in fluvial and manmade terraces at Koiliaris River Critical Zone Observatory. J Soils Sediments 15:347–364

    Article  CAS  Google Scholar 

  • Nesbitt HW (1979) Mobility and fractionation of rare earth elements during weathering of a granodiorite. Nature 279:206–210

    Article  CAS  Google Scholar 

  • Nordt LC, Wilding LP, Lynn WC, Crawford CC (2004) Vertisol genesis in a humid climate of the coastal plain of Texas, USA. Geoderma 122:83–102

    Article  CAS  Google Scholar 

  • Oliveira SMB, Trescases JJ, Melfi AJ (1992) Lateritic nickel deposits of Brazil. Mineral Deposita 27:137–146

    Article  Google Scholar 

  • Owens PN, Xu Z (2011) Recent advances and future directions in soils and sediments research. J Soils Sediments 11:875–888

    Article  Google Scholar 

  • Oze C, Fendorf S, Bird DK, Coleman RG (2004) Chromium geochemistry of serpentine soils. Int Geol Rev 46:97–126

    Article  Google Scholar 

  • Quantin C, Ettler V, Garnier J, Šebek O (2008) Chromium and nickel availability in soil profiles developed on Czech serpentinites. Compt Rendus Geosci 340:872–882

    Article  CAS  Google Scholar 

  • Quesada CA, Lloyd J, Schwarz M, Patiño S, Baker TR, Czimczik C, Fyllas NM, Martinelli L, Nardoto GB, Schmerler J, Santos AJB, Hodnett MG, Herrera R, Luizão FJ, Arneth A, Lloyd G, Dezzeo N, Hilke I, Kuhlmann I, Raessler M, Brand WA, Geilmann H, Moraes Filho JO, Carvalho FP, Araujo Filho RN, Chaves JE, Cruz Junior OF, Pimentel TP, Paiva R (2010) Variations in chemical and physical properties of Amazon forest soils. Biogeosciences 7:1515–1541

    Article  CAS  Google Scholar 

  • Saiano F, Scalenghe R (2009) An anthropic soil transformation fingerprinted by REY patterns. J Archaeol Sci 36:2502–2506

    Article  Google Scholar 

  • Scalenghe R, Ferraris S (2009) The first forty years of a Technosol. Pedosphere 19:40–52

    Article  Google Scholar 

  • Scalenghe R, Barello F, Saiano F, Ferrara E, Fontaine C, Caner L, Olivetti E, Boni I, Petit S (2015) Material sources of the Roman brick-making industry in the I and II century A.D. from Regio IX, Regio XI and Alpes Cottiae. Quat Int 357:189–206

    Article  Google Scholar 

  • Scalenghe R, Territo C, Petit S, Terribile F, Righi D (2016) The role of pedogenic overprinting in the obliteration of parent material in some polygenetic landscapes of Sicily (Italy). Geoderma Reg 7:49–58

    Article  Google Scholar 

  • Schoeneberger PJ, Wysocki DA, Benham EC, Broderson WD (2002) Field book for describing and sampling soils, version 2.0. Nat Res Cons Serv, USDA, National Soil Survey Center, Lincoln

    Google Scholar 

  • Smeck NE (1973) Phosphorus: an indicator of pedogenetic weathering processes. Soil Sci 115:199-206

  • Soil Survey Staff (2014) Keys to soil taxonomy twelfth edition. U.S. Government Printing Office, Washington, DC

    Google Scholar 

  • Tandarich JP, Darmody RG, Follmer LR, Johnson DL (2002) Historical development of soil and weathering profile concepts from Europe to the United States of America. Soil Sci Soc Am J 66:335-346

  • Vacca A, Bianco MR, Murolo M, Violante P (2012) Heavy metals in contaminated soils of the Rio Sitzerri floodplain (Sardinia, Italy): characterization and impact on pedodiversity. Land Degrad Dev 23:350–364

    Article  Google Scholar 

  • Walker TW, Syers JK (1976) The fate of phosphorus during pedogenesis. Geoderma 15:1–19

    Article  CAS  Google Scholar 

  • Wedepohl H (1995) The composition of the continental crust. Geochim Cosmochim Acta 59:1217–1239

    Article  CAS  Google Scholar 

  • Wen XY, Huang CM, Tang Y, Gong-Bo SL, Hu XX, Wang ZW (2014) Rare earth elements: a potential proxy for identifying the lacustrine sediment source and soil erosion intensity in karst areas. J Soils Sediments 14:1693–1702

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Without the support and the amusing company of Riccardo Bologna, the sampling for this study would not have been possible. We thank Eleonora Bonifacio for the routine analyses of some physico-chemical properties of the studied soils and especially for the useful discussions on the preliminary dataset. We gratefully acknowledge the time and expertise devoted to reviewing this manuscript by the reviewers and the members of the editorial board.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riccardo Scalenghe.

Additional information

Responsible editor: Fabio Scarciglia

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

Supplemental Information. Historical and geographical setting of the study area. (DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saiano, F., Scalenghe, R. Soil REE patterns as tracers of the emplacement of metal-rich anthropogenic materials. A case study in Moa (Cuba). J Soils Sediments 19, 2777–2784 (2019). https://doi.org/10.1007/s11368-019-02283-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-019-02283-w

Keywords

Navigation