Potential of terracing to reduce glyphosate and AMPA surface runoff on Latosol

Abstract

Purpose

Glyphosate is the world’s most used herbicide and monitoring glyphosate in the environment is a relevant topic. The present study aims to develop a methodology to extract glyphosate from the soil and sediments, and assess the potential of the terracing system to mitigate contamination by glyphosate and AMPA in soil and water.

Materials and methods

Collections were performed on a weekly basis in two different periods of the agricultural calendar, totaling 24 Latosol soil samples, 12 sediment samples, and 10 water samples. The sampling was performed in two distinct areas: in the cultivation area where the lots with and without terrace were installed (soil and water of the reservoirs) and in the creek (sediment) present in the middle of the property. The analytes were extracted from the soil and sediment samples using alkaline extraction with KH2PO4 and NH4OH. The supernatant resulting from the extraction and the water samples were submitted to the derivatization (FMOC-Cl) and solid-phase extraction steps. The samples were then analyzed by high-performance liquid chromatography equipped with fluorescence detector (HPLC-FD).

Results and discussion

The soil samples showed AMPA content in all samples ranging from 0.50 to 1.11 μg g−1 of soil. Glyphosate could be quantified in 37.5% of the samples, and the concentrations ranged from 0.21 to 0.49 μg g−1. High concentrations of glyphosate were detected in the water samples (20.74 and 31.24 μg L−1) in the first rain events after application, decreasing significantly in the following rainfall events. The concentrations found were similar for both lots, but the volume of runoff water was higher in the lot without terrace, thus a greater mass of analyte was transported. None of the analytes under investigation could be quantified in the analysis of riverbed sediments. Glyphosate and AMPA, however, were detected in 50 and 75% of the sediment samples respectively.

Conclusions

The results indicate the presence of analytes in the cultivation areas and prove the effectiveness of the terracing system in agricultural areas, limiting the dumping of the material originated from the surface runoff into water bodies and reducing the risk of contamination.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. ADAPAR – Agência de Defesa Agropecuária do Paraná (2017a) Comércio e Uso de Agrotóxicos e afins e Prestação de Serviços Fitossanitários. Relatório do Comércio de Agrotóxicos no Paraná. http://www.adapar.pr.gov.br/modules/conteudo/conteudo.php?conteudo=105. Accessed 26 Nov 2017

  2. ADAPAR – Agência de Defesa Agropecuária do Paraná (2017b) Portaria n° 202, de 19 de julho de 2017. Estabelece o período do vazio sanitário, as datas limites para a semeadura e colheita da soja, e outras medidas para o controle da ferrugem asiática (Phakopsorapachyrhizi) no Estado do Paraná. Governo do Estado, Secretaria da Agricultura e Abastecimento, Paraná, PR, 21 jul. 2017. p.3

  3. Alvares AC, Stape JL, Sentelhas PC, Gonçalves JLM, Sparovek G (2013) Köppen’s climate classification map for Brazil. Meteorol Z 22(6):711–728

    Article  Google Scholar 

  4. Amarante Junior OP, Santos TCR, Brito NM, Ribeiro ML (2002) Glifosato: propriedades, toxicidade, usos e legislação. Química Nova 25:589–593

    Article  Google Scholar 

  5. Andrighetti MS, Nachtigall GR, Queiroz SCN, Ferracini VL, Ayub MAS (2014) Biodegradação de glifosato pela microbiota de solos cultivados com macieira. Revista Brasileira de Ciência do Solo 38:1643–1653

    Article  Google Scholar 

  6. Aparicio VC, Gerónimo E, Marino D, Primost J, Carriquiriborde P, Costa JL (2013) Environmental fate of glyphosate and aminomethylphosphonicacid in surface water sand soil of agricultural basins. Chemosphere 93:1866–1873

    Article  CAS  Google Scholar 

  7. Araújo ASF, Monteiro RTR, Abakerli RB (2003) Effect of glyphosate on the microbial activity of two Brazilian soils. Chemosphere 52:799–804

    Article  CAS  Google Scholar 

  8. Báez ME, Fuentes E, Espina MJ, Espinoza J (2014) Determination of glyphosate and aminomethylphosphonic acid in aqueous soil matrices: a critical analysis of the 9-fluorenylmethyl chloroformate derivatization reaction and application to adsorption studies. J Sep Sci 37:3125–3132

    Article  CAS  Google Scholar 

  9. Bandeira DD, Munaretto JS, Rizzetti TM, Ferronato G, Prestes OD, Martins ML, Zanella R, Adaime MB (2014) Determinação de resíduos de agrotóxicos em leite bovino empregando método QuEChERS modificado e CG-MS/MS. Química Nova 37:900–907

    CAS  Google Scholar 

  10. Barja BC, Dos Santos AM (2005) Aminomethilphosphonic acid and glyphosate adsorption onto ghoetite: a comparative study. Environ Sci Technol 39:585–582

    Article  CAS  Google Scholar 

  11. Borggaard OK, Gimsing AL (2008) Fate of glyphosate in soil and the possibility of leaching to ground and surface waters: a review. Pest Manag Sci 64:441–456

    Article  CAS  Google Scholar 

  12. Botero-Coy AM, Ibánez M, Sancho JV, Hernández F (2013) Improvements in the analytical methodology for the residue determination of the herbicide glyphosate in soils by liquid chromatography coupled to mass spectrometry. J Chromatogr A 1292:132–141

    Article  CAS  Google Scholar 

  13. Chang Y, Zhang Z, Hao J, Yang W, Tang J (2016) A simple label free colorimetric method for glyphosate detectionbased on the inhibition of peroxidase-like activity of Cu(II). Sensors Actuators B Chem 228:410–415

    Article  CAS  Google Scholar 

  14. Coupe RH, Kalkhoff SJ, Capel PD, Gregoire C (2012) Fate and transport of glyphosate and aminomethylphosphonic acid in surface waters of agricultural basins. Pest Manag Sci 68:16–30

    Article  CAS  Google Scholar 

  15. Dollinger J, Dagès C, Voltz M (2015) Glyphosate sorption to soils and sediments predicted by pedotransfer functions. Environ Chem Lett 13:293–307

    Article  CAS  Google Scholar 

  16. Druart C, Delhomme O, Vaufleury A, Ntcho E, Millet M (2011) Optimization of extraction procedure and chromatographic separation of glyphosate, glufosinate and aminomethylphosphonic acid in soil. Anal Bioanal Chem 399:1725–1732

    Article  CAS  Google Scholar 

  17. Duke SO, Lydon J, Koskinen WC, Moorman TB, Chaney RL, Hammerschmidt R (2012) Glyphosate effects on plant mineral nutrition, crop rhizosphere microbiota, and plant disease in glyphosate-resistant crops. J Agric Food Chem 60:10375–10397

    Article  CAS  Google Scholar 

  18. EMBRAPA – Brazilian Agricultural Research Corporation (2012) Simplified map of soils of the state of Paraná. Soil Embrapa - Ministry of Agriculture, Livestock and Food Supply

  19. EMBRAPA – Empresa Brasileira de Pesquisa Agropecuária (2013) Sistema Brasileiro de Classificação de Solos. Embrapa, Brasília

    Google Scholar 

  20. EMBRAPA – Empresa Brasileira de Pesquisa Agropecuária (2017) Manual de Métodos de Análise de Solo. Embrapa, Rio de Janeiro

    Google Scholar 

  21. Gerritse RG, Beltran J, Hernandes F (1996) Adsorption of atrazine, simazine, and glyphosate in soil of the Gnangara mound, Western Australia. Soil Res 34:599–607

    Article  CAS  Google Scholar 

  22. Grandcoin A, Piel S, Baures E (2017) Aminomethylphosphonic acid (AMPA) in natural waters: its sources, behavior and environmental fate. Water Res 117:187–197

    Article  CAS  Google Scholar 

  23. INMETRO - National Institute of Metrology, Quality and Technology (2016) Guidance on validation of analytical methods. DOQ-CGCRE-008 5:31

  24. Keesstra S, Nunes JP, Saco P, Parsons T, Poeppl R, Masselink R, Cerdà A (2018) The way forward: can connectivity be useful to design better measuring and modelling schemes for water and sediment dynamics? Sci Total Environ 644:1557–1572

    Article  CAS  Google Scholar 

  25. Kumari KGID, Moldrup P, Paradelo M, Elsgaard L, de Jonge LW (2016) Soil properties control glyphosate sorption in soils amended with birch wood biochar. Water Air Soil Pollut 227:174

    Article  CAS  Google Scholar 

  26. Londero AL, Minella JP, Deuschle D, Schneider FJ, Boeni M, Merten GH (2018) Impact of broad-based terraces on water and sediment losses in no-till (paired zero-order) catchments in southern Brazil. J Soils Sediments 18:1159–1175

    Article  Google Scholar 

  27. Lupi L, Miglioranza KSB, Aparicio VC, Marino D, Bedmar F, Wunderlin DA (2015) Occurrence of glyphosate and AMPA in an agricultural watershed from the southeastern region of Argentina. Sci Total Environ 536:687–694

    Article  CAS  Google Scholar 

  28. Masselink R, Temme AJAM, Giménez R, Casalí J, Keesstra SD (2017a) Assessing hillslope-channel connectivity in an agricultural catchment using rare-earth oxide tracers and random forests models. Cuadernos de Investigación Geográfica 43:17–39

    Article  Google Scholar 

  29. Masselink RJH, Heckmann T, Temme AJAM, Anders NS, Gooren HPA, Keesstra SD (2017b) A network theory approach for a better understanding of overland flow connectivity. Hydrol Process 31:207–220

    Article  Google Scholar 

  30. Mekonnen M, Keesstra SD, Baartman JEM, Stroosnijder L, Maroulis J (2016) Reducing sediment connectivity through man-made and natural sediment sinks in the Minizr Catchment, Northwest Ethiopia. Land Degrad Dev 28:708–717

    Article  Google Scholar 

  31. Meurer EJ (2006) Fundamentals of soil chemistry. Porto Alegre: Evangarf, 1:285

  32. Miles CJ, Moye HA (1988) Extraction of glyphosate herbicide from soil and clay minerals and determination of residues in soils. J Agric Food Chem 36:486–491

    Article  CAS  Google Scholar 

  33. Moraes PVD, Rossi P (2010) Comportamento ambiental do glifosato. Scientia Agraria Paranaensis 9:22–35

    Google Scholar 

  34. Morillo E, Undabeytia T, Maqueda C (1997) Adsortion of glyphosate on the clay mineral montmorillonite: effect of cu (II) in solution and adsorbed on the mineral. Environ Sci Technol 31:3588–3592

    Article  CAS  Google Scholar 

  35. Ochoa V, Maestroni B (2018) Pesticides in water, soil, and sediments. Integrated Analytical Approaches for Pesticide Management. https://doi.org/10.1016/b978-0-12-816155-5.00009

  36. Okada E, Costa JL, Bedmar F (2016) Adsorption and mobility of glyphosate in different soils under no-till and conventional tillage. Geoderma 263:78–85

    Article  CAS  Google Scholar 

  37. Peruzzo PJ, Porta AA, Ronco AE (2008) Levels of glyphosate in surface waters, sediments and soils associated with direct sowing soybean cultivation in north pampasic region of Argentina. Environ Pollut 156:61–66

    Article  CAS  Google Scholar 

  38. Pinto E, Soares AG, Ferreira IMPLVO (2018) Quantitative analysis of glyphosate, glufosinate and AMPA in irrigation water by in situ derivatization–dispersive liquid–liquid microextraction combined with UPLC-MS/MS. Anal Methods 10:554–561

    Article  CAS  Google Scholar 

  39. Poiger T, Buerge IJ, Bächli A, Müller MD, Balmer ME (2017) Occurrence of the herbicide glyphosate and its metabolite AMPA in surface waters in Switzerland determined with on-line solid phase extraction LC-MS/MS. Environ Sci Pollut Res 24:1588–1596

    Article  CAS  Google Scholar 

  40. Prado H (2011) Easy pedology: applications. Piracicaba - SP, support foundation for agricultural research 1: 180

  41. Prata F, Lavorenti A, Regitano JB, Tornisielo VL (2000) Influência da matéria orgânica na sorção e dessorção do glifosato em solos com diferentes atributos mineralógicos. Rev Bras Ciênc Solo 24:947–951

    Article  CAS  Google Scholar 

  42. Prosdocimi M, Tarolli P, Cerdà A (2016) Mulching practices for reducing soil water erosion: a review. Earth-Sci Rev 161:191–203

    Article  Google Scholar 

  43. Queiroz GMP, Silva MR, Bianco RJF, Pinheiro A, Kaufmann V (2011) Transporte de glifosato pelo escoamento superficial e por lixiviação em um solo agrícola. Química Nova 34:190–195

    Article  CAS  Google Scholar 

  44. Ramirez CE, Bellmund S, Gardinali PR (2014) A simple method for routine monitoring of glyphosate and its main metabolite in surface waters using lyophilization and LC-FLD + MS/MS. Case study: canals with influence on Biscayne national park. Sci Total Environ 496:389–401

    Article  CAS  Google Scholar 

  45. Rampazzo N, Rampazzo Todorovic G, Mentler A, Blum WEH (2013) Adsorption of glyphosate and aminomethylphosphonic acid in soils. Int Agrophysics 27:203–209

    Article  CAS  Google Scholar 

  46. Rozane DE, Romualdo LM, Centurion JF, Barbosa JC (2011) Dimensionamento do número de amostras para avaliação da fertilidade do solo. Ciências Agrárias 32:111–118

    Article  Google Scholar 

  47. Sasal MC, Demonte L, Cislaghi A, Gabioud EA, Oszust JD, Wilson MG, Michlig N, Beldoménico HR, Repetti MR (2015) Glyphosate loss by runoff and its relationship with phosphorus fertilization. J Agric Food Chem 63:4444–4448

    Article  CAS  Google Scholar 

  48. Scribner EA, Battaglin WA, Gilliom RJJ, Meyer MTT (2007) Concentrations of glyphosate, its degradation product, aminomethylphosphonic acid, and glufosinate in ground- and surface-water, rainfall, and soil samples collected in the United States, 2001–06. Geological Survey Scientific Investigations Report. https://pubs.usgs.gov/sir/2007/5122/index.html. Accessed 26 Nov 2017

  49. Silva BM, Silva PRD, Rezende MOO (2015) Development of green HPLC/UV methodology for the determination of glyphosate in environmental soil samples. Eclética Química 40:106–116

    Article  Google Scholar 

  50. SINDIVEG – Sindicato Nacional da Indústria de Produtos para Defesa Vegetal (2016) Dados de utilização de pesticidas por estados brasileiros. http://sindiveg.org.br/balanco-2015-setor-de-agroquimicos-confirma-queda-de-vendas/. Accessed 26 April 2018

  51. Tarolli P (2018) Agricultural Terraces Special Issue Preface. Land Degrad Dev 29(10):3544–3548

    Article  Google Scholar 

  52. Tarolli P, Preti F, Romano N (2014) Terraced landscapes: from an old best practice to a potential hazard for soil degradation due to land abandonment. Anthropocene 6:10–25

    Article  Google Scholar 

  53. Todorovic GR, Rampazzo N, Mentler A, Blum WE, Eder A, Strauss P (2014) Influence of soil tillage and erosion on the dispersion of glyphosate and aminomethylphosphonic acid in agricultural soils. Int Agrophys 28:93–100

    Article  CAS  Google Scholar 

  54. Toni LRM, Santana H, Zaia DAM (2006) Adsorption of glyphosate on soils and minerals. Química Nova 29:829–833

    Article  CAS  Google Scholar 

  55. Turnbull L, Hütt MT, Ioannides AA, Kininmonth S, Poeppl R, Tockner K, Parsons AJ (2018) Connectivity and complex systems: learning from a multi-disciplinary perspective. Appl Network Sci 3:11

    Article  Google Scholar 

  56. Van Stempvoort DR, Roy JW, Brown SJ, Bickerton G (2014) Residues of the herbicide glyphosate in riparian groundwater in urban catchments. Chemosphere 95:455–463

    Article  CAS  Google Scholar 

  57. Zanão Júnior LA, Faria RT, Caramori PH (2015) Produtividade da soja no entorno do reservatório de Itaipu. IAPAR, Londrina

    Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Itaipu Binacional and Parque Tecnolológico Itaipu Foundation for technical, logistical, and financial support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Marcela Boroski.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible editor: Fanghua Hao

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Exterkoetter, R., Rozane, D.E., da Silva, W.C. et al. Potential of terracing to reduce glyphosate and AMPA surface runoff on Latosol. J Soils Sediments 19, 2240–2250 (2019). https://doi.org/10.1007/s11368-018-2210-1

Download citation

Keywords

  • Conservation management
  • Environmental contamination
  • Latosol
  • Micropollutant dynamics
  • Surface runoff