Skip to main content
Log in

Different distribution of polycyclic aromatic hydrocarbons (PAHs) between Sphagnum and Ledum peat from an ombrotrophic bog in Northeast China

  • Soils, Sec 3 • Remediation and Management of Contaminated or Degraded Lands • Research Article
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

The aims of this study are to investigate historical PAH deposition through the analysis of PAHs in bulk peat cores and reveal the different distribution of PAHs in Sphagnum and Ledum peat from peat cores.

Materials and methods

Peat cores from Jingjiang peatland are collected, and Sphagnum peat samples are manually separated from bulk peat. The remaining bulk peat samples are defined as “Ledum peat.” 137Cs is used to date the peat cores. PAH contents as well as physicochemical property of Sphagnum and Ledum peat are determined.

Results and discussion

The PAH deposition rates measured in the bulk peat cores range from 3.5 to 12.8 ng cm−2 year−1, which are different in both absolute values and trends from those of nearby sediment cores. Concentrations of PAHs in Sphagnum and Ledum at the surface are similar, indicating the accumulation ability by adsorption and uptake between two species of plants are similar. However, at depths of 5–30 cm, concentrations of PAHs in Sphagnum peat are higher than those in Ledum peat, which can be attributed to their different PAH accumulation abilities or to different PAH degradation rates. An increase in PAHs/TOC ratios with depth in Sphagnum peat indicates that PAHs are resistant to degradation in Sphagnum peat. While a significant positive correlation between C/N and PAHs in Ledum peat suggests that PAHs may be degraded during peat decomposition in Ledum peat.

Conclusions

This study finds a difference in PAH concentrations between Sphagnum and Ledum peat. The results suggest that peat quality rather than microbials results in a difference in both PAH accumulation and degradation in peat cores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alves CA, Vicente AM, Custódio D et al (2017) Polycyclic aromatic hydrocarbons and their derivatives (nitro-PAHs, oxygenated PAHs, and azaarenes) in PM 2.5 from Southern European cities. Sci Total Environ 595:494–504

  • Anderson JW, Newton FC, Hardin J et al (1996) Chemistry and toxicity of sediments from San Diego Bay including a biomarker (P450 RGS) response. In: Bengtson DA, Henshel DS (eds) Environmental toxicology and risk assessment: biomarkers and risk assessment, ASTM STP 1306, vol. 5. American Society for Testing and Materials, Philadelphia, pp 53–78

    Google Scholar 

  • Augusto S, Sierra J, Nadal M, Schuhmacher M (2015) Tracking polycyclic aromatic hydrocarbons in lichens: It’s all about the algae. Environ Pollut 207:441–445

    Article  CAS  Google Scholar 

  • Bao K, Xia W, Lu X, Wang G (2010) Recent atmospheric lead deposition recorded in an ombrotrophic peat bog of Great Hinggan Mountains, Northeast China, from 210Pb and 137Cs dating. J Environ Radioactiv 101:773–779

    Article  CAS  Google Scholar 

  • Bao K, Shen J, Zhang Y, Wang J, Wang GP (2014) A 200-year record of polycyclic aromatic hydrocarbons contamination in an ombrotrophic peatland in Great Hinggan Mountain, Northeast China. J MT Sci-Engl 11:1085–1096

    Article  Google Scholar 

  • Berset JD, Kuehne P, Shotyk W (2001) Concentrations and distribution of some polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs) in an ombrotrophic peat bog profile of Switzerland. Sci Total Environ 267:67–85

    Article  CAS  Google Scholar 

  • Bindler R (2006) Mired in the past - looking to the future: geochemistry of peat and the analysis of past environmental changes. Glob Planet Chang 53:209–221

    Article  Google Scholar 

  • Boileau LJR, Beckett P, Lavoie P, Richardson DHS (1982) Lichens and mosses as monitors of industrial activity associated with uranium mining in Northern Ontario, Canada. Part 1. Environ Pollut 4:69–84

    Article  CAS  Google Scholar 

  • Cai YZ, Wang XH, Wu YL, Li Y, Ya M (2016) Over 100-year sedimentary record of polycyclic aromatic hydrocarbons (PAHs) and organochlorine compounds (OCs) in the continental shelf of the East China Sea. Environ Pollut 219:774–784

    Article  CAS  Google Scholar 

  • Capozzi F, Palma A, Adamo P et al (2017) Monitoring chronic and acute PAH atmospheric pollution using transplants of the moss Hypnum cupressiforme and Robinia pseudacacia leaves. Atmos Environ 150:45–54

    Article  CAS  Google Scholar 

  • Chibwe L, Geier MC, Nakamura J, Tanguay RL, Aitken MD, Simonich SLM (2015) Aerobic bioremediation of PAH contaminated soil results in increased genotoxicity and developmental toxicity. Environ Sci Technol 49:13889–13898

    Article  CAS  Google Scholar 

  • Cong JX, Gao CY, Zhang Y et al (2016) Dating the period when intensive anthropogenic activity began to influence the Sanjiang Plain, Northeast China. Sci Rep 6:22153

  • Desalme D, Binet P, Chiapusio G (2013) Challenges in tracing the fate and effects of atmospheric polycyclic aromatic hydrocarbon deposition in vascular plants. Environ Sci Technol 47:3967–3981

    Article  CAS  Google Scholar 

  • Dias APL, Rinaldi MCS, Domingos M (2016) Foliar accumulation of polycyclic aromatic hydrocarbons in native tree species from the Atlantic Forest (SE-Brazil). Sci Total Environ 544:175–184

    Article  CAS  Google Scholar 

  • Dolegowska S, Migaszewski ZM (2011) PAH concentrations in the moss species Hylocomium splendens (Hedw.) BSG and Pleurozium schreberi (Brid.) Mitt. from the Kielce area (south-central Poland). Ecotox Environ Safe 74(6):1636–1644

    Article  CAS  Google Scholar 

  • Dreyer A, Radke M, Turunen J, Blodau C (2005) Long-term change of polycyclic aromatic hydrocarbon deposition to peatlands of eastern Canada. Environ Sci Technol 39:3918–3924

    Article  CAS  Google Scholar 

  • Gerdol R, Bragazza L, Marchesini R, Medici A, Pedrine P, Benedetti S (2002) Use of moss (Tortula muralis Hedw.) for monitoring organic and inorganic air pollution in urban and rural sites in Northern Italy. Atmos Environ 36:4069–4075

    Article  CAS  Google Scholar 

  • Giordano S, Adamo P, Sorbo S, Vingiani S (2005) Atmospheric trace metal pollution in the Naples urban area based on results from moss and lichen bags. Environ Pollut 136:431–442

    Article  CAS  Google Scholar 

  • González AG, Pokrovsky OS (2014) Metal adsorption onmosses: toward a universal adsorption model. J Colloid Interface Sci 415:169–178

    Article  CAS  Google Scholar 

  • Gorham E (1991) Northern peatlands: role in the carbon cycle and probable responses to climatic warming. Ecol Appl 1:182–195

    Article  Google Scholar 

  • Guan YF, Sun JL, Ni HG, Guo JY (2012) Sedimentary record of polycyclic aromatic hydrocarbons in a sediment core from a maar lake, Northeast China: evidence in historical atmospheric deposition. J Environ Monit 14:2475–2481

    Article  CAS  Google Scholar 

  • Huang WL, Ping PA, Yu ZQ, Fu HM (2003) Effects of organic matter heterogeneity on sorption and desorption of organic contaminants by soils and sediments. Appl Geochem 18:955–972

    Article  CAS  Google Scholar 

  • Jonker MTO, Koelmans AA (2002) Sorption of polycyclic aromatic hydrocarbons and polychlorinated biphenyls to soot and soot-like materials in the aqueous environment: mechanistic considerations. Environ Sci Technol 36:3725–3734

    Article  CAS  Google Scholar 

  • Kuhry P, Vitt DH (1996) Fossil carbon/nitrogen ratios as a measure of peat decomposition. Ecology 77:271–275

    Article  Google Scholar 

  • Lang Y, Wang N, Gao H, Bai J (2012) Distribution and risk assessment of polycyclic aromatic hydrocarbons (PAHs) from Liaohe estuarine wetland soils. Environ Monit Assess 184(9):5545–5552

    Article  CAS  Google Scholar 

  • Laor Y, Rebhun M (2002) Evidence for nonlinear binding of PAHs to dissolved humic acids. Environ Sci Technol 36:955–961

    Article  CAS  Google Scholar 

  • Lehndorff E, Schwark L (2004) Biomonitoring of air quality in the cologne conurbation using pine needles as a passive sampler—part II: polycyclic aromatic hydrocarbons (PAH). Atmos Environ 38:3793–3808

    Article  CAS  Google Scholar 

  • Magi E, Bianco R, Ianni C, DiCarro M (2002) Distribution of polycyclic aromatic hydrocarbons in the sediments of the Adriatic Sea. Environ Pollut 119:91–98

    Article  CAS  Google Scholar 

  • Maksimov LN, Ospennikov EN (2012) Evolution of swampy systems and permafrost conditions of the Bol’shezemel’skaya tundra in the Holocene, Kriosf. Zemli 16(3):53–61

    Google Scholar 

  • Malawska M, Ekonomiuk A, Wilkomirski B (2006) Polycyclic aromatic hydrocarbons in peat cores from southern Poland: distribution in stratigraphic profiles as an indicator of PAH sources. Society 1:1–14

    Google Scholar 

  • Moore TR, Bubier JL, Bledzki L (2007) Litter decomposition in temperate peatland ecosystems: the effect of substrate and site. Ecosystems 10:949–963

    Article  Google Scholar 

  • Mowat FS, Bundy KJ (2001) Correlation of field-measured toxicity with chemical concentration and pollutant availability. Environ Int 27:479–489

    Article  CAS  Google Scholar 

  • Ni JZ, Luo YM, Wei R, Li XH (2008) Distribution patterns of polycyclic aromatic hydrocarbons among different organic carbon fractions of polluted agricultural soils. Geoderma 146:277–282

    Article  CAS  Google Scholar 

  • Palozzi JE, Lindo Z (2017) Pure and mixed litters of Sphagnum and Carex exhibit a home-field advantage in Boreal peatlands. Soil Biol Biochem 115:161–168

    Article  CAS  Google Scholar 

  • Pan B, Ghosh S, Xing BS (2007a) Nonideal binding between dissolved humic acids and polyaromatic hydrocarbons. Environ Sci Technol 41:6472–6478

    Article  CAS  Google Scholar 

  • Pan B, Xing BS, Liu WX, Xing G, Tao S (2007b) Investigating interactions of phenanthrene with dissolved organic matter: limitations of Stern-Volmer plot. Chemosphere 69:1555–1562

    Article  CAS  Google Scholar 

  • Pontevedra-Pombal X, Rey-Salgueiro L, Garcia-Falcon MS et al (2012) Pre-industrial accumulation of anthropogenic polycyclic aromatic hydrocarbons found in a blanket bog of the Iberian Peninsula. Environ Res 116:36–43

    Article  CAS  Google Scholar 

  • Readman JW, Preston MR, Mantoura RFC (1986) An integrated technique to quantify sewage, oil and PAH pollution in estuarine and coastal environments. Mar Pollut Bull 17:298–308

    Article  CAS  Google Scholar 

  • Reddy KR, DeLaune RD, DeBusk WF, Koch S (1993) Long-term nutrient accumulation rates in the Everglades. Soil Sci Soc Am J 57:1147–1155

    Article  CAS  Google Scholar 

  • Ren XY, Zeng GM, Tang L et al (2018) Sorption, transport and biodegradation—an insight into bioavailability of persistent organic pollutants in soil. Sci Total Environ 610:1154–1163

    Article  CAS  Google Scholar 

  • Sakulthaew C, Comfort S, Chokejaroenrat C, Harris C, Li X (2014) A combined chemical and biological approach to transforming and mineralizing PAHs in runoff water. Chemosphere 117:1–9

    Article  CAS  Google Scholar 

  • Sanders G, Jones KC, Hamiltontaylor J, Dorr H (1995) PCB and PAH fluxes to a dated UK feat core. Environ Pollut 89:17–25

    Article  CAS  Google Scholar 

  • Shen H, Huang Y, Wang R, Zhu D, Li W, Shen G, Wang B, Zhang Y, Chen Y, Lu Y, Chen H, Li T, Sun K, Li B, Liu W, Liu J, Tao S (2013) Global atmospheric emissions of polycyclic aromatic hydrocarbons from 1960 to 2008 and future predictions. Environ Sci Technol 47(12):6415–6424

    Article  CAS  Google Scholar 

  • Spagnuolo V, Figllioli F, De Nicola F et al (2017) Tracking the route of phenanthrene uptake in mosses: an experimental trial. Sci Total Environ 575:1066–1073

    Article  CAS  Google Scholar 

  • Terzaghi E, Wild E, Zacchello G, Cerabolini BEL, Jones KC, di Guardo A (2013) Forestfilter effect: role of leaves in capturing/releasing air particulate matter and its associated PAHs. Atmos Environ 74:378–384

    Article  CAS  Google Scholar 

  • Thuens S, Blodau C, Radke M (2013) How suitable are peat cores to study historical deposition of PAHs? Sci Total Environ 450:271–279

    Article  CAS  Google Scholar 

  • Tretiach M, Pittao E, Crisafulli P, Adamo P (2011) Influence of exposure sites on trace element enrichment in moss-bags and characterization of particles deposited on the biomonitor surface. Sci Total Environ 409:822–830

    Article  CAS  Google Scholar 

  • Viskari EL, Rekila R, Roy S et al (1997) Airborne pollutants along a roadside: assessment using snow analyses and moss bags. Environ Pollut 97:153–160

    Article  CAS  Google Scholar 

  • Vuković G, Urosevic MA, Razumenic I et al (2014) Air quality in urban parking garages (PM10, major and trace elements, PAHs): instrumental measurements vs. active moss biomonitoring. Atmos Environ 85:31–40

    Article  CAS  Google Scholar 

  • Wang ZC, Liu ZF, Yang Y, Li T, Liu M (2012) Distribution of PAHs in tissues of wetland plants and the surrounding sediments in the Chongming wetland, Shanghai, China. Chemosphere 89:221–227

    Article  CAS  Google Scholar 

  • Wang S, Ni HG et al (2013) Polycyclic aromatic hydrocarbons in soils from the Tibetan Plateau, China: distribution and influence of environmental factors. Environ Sci Processes Impacts 15(3):661–667

    Article  CAS  Google Scholar 

  • Wang ZC, Liu ZF, Xu KH, Mayer LM, Zhang Z, Kolker AS, Wu W (2014) Concentrations and sources of polycyclic aromatic hydrocarbons in surface coastal sediments of the northern Gulf of Mexico. Geochem Trans 15:2

    Article  CAS  Google Scholar 

  • Wei Y, Liu SS, Wang ZQ, Wang Z, Wang S (2017) The distribution variation of polycyclic aromatic hydrocarbons between fresh snow and seasonal snowpack in campus in Changchun City, Northeast China. Water Air Soil Pollut 228:233

    Article  CAS  Google Scholar 

  • Wild SR, Jones KC (1995) Polynuclear aromatic-hydrocarbons in the United-Kingdom environment—a preliminary source inventory and budget. Environ Pollut 88:91–108

    Article  CAS  Google Scholar 

  • Zaccone C, Gallipoli A, Cocozza C, Trevisan M, Miano TM (2009) Distribution patterns of selected PAHs in bulk peat and corresponding humic acids from a Swiss ombrotrophic bog profile. Plant Soil 315:35–45

    Article  CAS  Google Scholar 

  • Zhang YX, Tao S (2009) Global atmospheric emission inventory of polycyclic aromatic hydrocarbons (PAHs) for 2004. Atmos Environ 43:812–819

    Article  CAS  Google Scholar 

  • Zhang SC, Zhang W, Shen YT, Wang K, Hu L, Wang X (2008) Dry deposition of atmospheric polycyclic aromatic hydrocarbons (PAHs) in the southeast suburb of Beijing, China. Atmos Res 89:138–148

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Zhanfei Liu for giving many suggestions for data organization and discussion. We are grateful for the sample collection and analysis from Chao Liu and Xinhua Zhou. We are also grateful for data analysis help from Dr. Zhiwei Xu, sampling locations drawing from Dr. Tianyu Zhang, and manuscript revising by Dr. Kaijun Lu. We appreciate language edits by Dr. Jinbo Zhao.

Funding

This project was funded by the National Natural Science Foundation—China (Grant Nos. 41401544, 41771497) and the Fundamental Research Funds for the Central Universities (Grant Nos. 2412017FZ022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zucheng Wang.

Additional information

Responsible editor: Kitae Baek

Electronic supplementary material

ESM 1

(DOCX 36 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Li, H. & Liu, S. Different distribution of polycyclic aromatic hydrocarbons (PAHs) between Sphagnum and Ledum peat from an ombrotrophic bog in Northeast China. J Soils Sediments 19, 1735–1744 (2019). https://doi.org/10.1007/s11368-018-2178-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-018-2178-x

Keywords

Profiles

  1. Zucheng Wang