Skip to main content
Log in

Effects of 3,4-dimethylpyrazole phosphate (DMPP) on the abundance of ammonia oxidizers and denitrifiers in two different intensive vegetable cultivation soils

  • Soils, Sec 2 • Global Change, Environ Risk Assess, Sustainable Land Use • Research Article
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

Nitrification and denitrification in the N cycle are affected by various ammonia oxidizers and denitrifying microbes in intensive vegetable cultivation soils, but our current understanding of the effect these microbes have on N2O emissions is limited. The nitrification inhibitor, 3,4-dimethylpyrazole phosphate (DMPP), acts by slowing nitrification and is used to improve fertilizer use efficiency and reduce N losses from agricultural systems; however, its effects on nitrifier and denitrifier activities in intensive vegetable cultivation soils are unknown.

Materials and methods

In this study, we measured the impacts of DMPP on N2O emissions, ammonia oxidizers, and denitrifying microbes in two intensive vegetable cultivation soils: one that had been cultivated for a short term (1 year) and one that had been cultivated over a longer term (29 years). The quantitative PCR technique was used in this study. Three treatments, including control (no fertilizer), urea alone, and urea with DMPP, were included for each soil. The application rates of urea and DMPP were 1800 kg ha−1 and 0.5% of the urea-N application rate.

Results and discussion

The application of N significantly increased N2O emissions in both soils. The abundance of ammonia-oxidizing bacteria (AOB) increased significantly with high rate of N fertilizer application in both soils. Conversely, there was no change in the growth rate of ammonia-oxidizing archaea (AOA) in response to the applied urea despite the presence of larger numbers of AOA in these soils. This suggests AOB may play a greater role than AOA in the nitrification process, and N2O emission in intensive vegetable cultivation soils. The application of DMPP significantly reduced soil NO3-N content and N2O emission, and delayed ammonia oxidation. It greatly reduced AOB abundance, but not AOA abundance. Moreover, the presence of DMPP was correlated with a significant decrease in the abundance of nitrite reductase (nirS and nirK) genes.

Conclusions

Long-term intensive vegetable cultivation with heavy N fertilization altered AOB and nirS abundance. In vegetable cultivation soils with high N levels, DMPP can be effective in mitigating N2O emissions by directly inhibiting both ammonia oxidizing and denitrifying microbes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ai C, Liang G, Sun J, Wang X, He P, Zhou W (2013) Different roles of rhizosphere effect and long-term fertilization in the activity and community structure of ammonia oxidizers in a calcareous fluvo-aquic soil. Soil Biol Biochem 57:30–42

    Article  CAS  Google Scholar 

  • Bao Q, Ju X, Gao B, Qu Z, Christie P, Lu Y (2011) Response of nitrous oxide and corresponding bacteria to managements in an agricultural soil. Soil Sci Soc Am J 76:130–141

    Article  CAS  Google Scholar 

  • Benckiser G, Christ E, Herbert T, Weiske A, Blome J, Hardt M (2013) The nitrification inhibitor 3,4-dimethylpyrazole-phosphat (DMPP) - quantification and effects on soil metabolism. Plant Soil 371:257–266

    Article  CAS  Google Scholar 

  • Braker G, Fesefeldt A, Witzel KP (1998) Development of PCR primer systems for amplification of nitrite reductase genes (nirK and nirS) to detect denitrifying, bacteria in environmental samples. Appl Environ Microbiol 64:3769–3995

    CAS  Google Scholar 

  • Chen Z, Luo X, Hu R, Wu M, Wu J, Wei W (2010) Impact of long-term fertilization on the composition of denitrifier communities based on nitrite reductase analyses in a paddy soil. Microb Ecol 60:850–861

    Article  CAS  Google Scholar 

  • Chen Z, Liu J, Wu M, Xie X, Wu J, Wei W (2012) Differentiated response of denitrifying communities to fertilization regime in paddy soil. Microb Ecol 63:446–459

    Article  Google Scholar 

  • Dambreville C, Hallet S, Nguyen C, Morvan T, Germon JC, Philippot L (2006) Structure and activity of the denitrifying community in a maize-cropped field fertilized with composted pig manure or ammonium nitrate. FEMS Microbiol Ecol 56:119–131

    Article  CAS  Google Scholar 

  • Di HJ, Cameron KC (2011) Inhibition of ammonium oxidation by a liquid formulation of 3,4-dimethylpyrazole phosphate (DMPP) compared with a dicyandiamide (DCD) solution in six New Zealand grazed grassland soils. J Soils Sediments 11:1032–1039

    Article  CAS  Google Scholar 

  • Di HJ, Cameron KC (2012) How does the application of different nitrification inhibitors affect nitrous oxide emissions and nitrate leaching from cow urine in grazed pastures? Soil Use Manag 28:54–61

    Article  Google Scholar 

  • Di HJ, Cameron KC, Shen JP, Winefield CS, O’Callaghan M, Bowatte S, He J (2010) Ammonia-oxidizing bacteria and archaea grow under contrasting soil nitrogen conditions. FEMS Microbiol Ecol 72:386–394

    Article  CAS  Google Scholar 

  • Florio A, Clark IM, Hirsch PR, Jhurreea D, Benedetti A (2014) Effects of the nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) on abundance and activity of ammonia oxidizers in soil. Biol Fertil Soils 50:795–807

    Article  CAS  Google Scholar 

  • Francis CA, Roberts KJ, Beman JM, Santoro AE, Oakley BB (2005) Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proceedings of the national academy of sciences of the United States of America 102:14683–14688

  • Garbeva P, Baggs EM, Prosser JI (2007) Phylogeny of nitrite reductase (nirK) and nitric oxide reductase (norB) genes from Nitrosospira species isolated from soil. FEMS Microbiol Lett 266:83–89

    Article  CAS  Google Scholar 

  • Gong P, Zhang L, Wu Z, Chen Z, Chen L (2013) Responses of ammonia-oxidizing bacteria and archaea in two agricultural soils to nitrification inhibitors DCD and DMPP: a pot experiment. Pedosphere 23:729–739

    Article  CAS  Google Scholar 

  • He JZ, Shen JP, Zhang LM, Zhu YG, Zheng YM, Xu MG, Di HJ (2007) Quantitative analyses of the abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea of a Chinese upland red soil under long-term fertilization practices. Environ Microbiol 9:2364–2374

    Article  CAS  Google Scholar 

  • Jackson ML (1958) Soil chemical analysis. Prentice-Hall, Englewood Cliffs, NJ, USA

  • Jia Z, Conrad R (2009) Bacteria, rather than archaea, dominate microbial ammonia oxidation in an agricultural soil. Environ Microbiol 11:1658–1671

    Article  CAS  Google Scholar 

  • Kastl EM, Schloter-Hai B, Buegger F, Schloter M (2015) Impact of fertilization on the abundance of nitrifiers and denitrifiers at the root–soil interface of plants with different uptake strategies for nitrogen. Biol Fertil Soils 51:57–64

    Article  CAS  Google Scholar 

  • Kleineidam K, Košmrlj K, Kublik S, Palmer I, Pfab H, Ruser R, Fiedler S, Schloter M (2011) Influence of the nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) on ammonia-oxidizing bacteria and archaea in rhizosphere and bulk soil. Chemosphere 84:182–186

    Article  CAS  Google Scholar 

  • Kou YP, Wei K, Chen GX, Wang ZY, Xu H (2015) Effects of 3,4-dimethylpyrazole phosphate and dicyandiamide on nitrous oxide emission in a greenhouse vegetable soil. Plant Soil Environ 61:29–35

    Google Scholar 

  • Leininger S, Urich T, Schloter M, Schwark L, Qi J, Nicol GW, Prosser JI, Schuster SC, Schleper C (2006) Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature 442:806–809

    Article  CAS  Google Scholar 

  • Li J, Luo J, Shi Y, Li Y, Ma Y, Ledgard S, Wang L, Houlbrooke D, Bo L, Lindsey S (2016) Dung and farm dairy effluent affect urine patch nitrous oxide emissions from a pasture. Anim Prod Sci 56:337–342

    Article  CAS  Google Scholar 

  • Liu Y, Yang Y, Qin HL, Zhu YJ, Wei WX (2014) Differential responses of nitrifier and denitrifier to dicyandiamide in short- and long-term intensive vegetable cultivation soils. J Integr Agric 13:1090–1098

    Article  CAS  Google Scholar 

  • Luo J, Ledgard S, Wise B, Lindsey S (2016) Effect of dicyandiamide (DCD) on nitrous oxide emissions from cow urine deposited on a pasture soil, as influenced by DCD application method and rate. Anim Prod Sci 56:350–354

    Article  CAS  Google Scholar 

  • Mahmood S, Prosser JI (2006) The influence of synthetic sheep urine on ammonia oxidizing bacterial communities in grassland soil. FEMS Microbiol Ecol 56:444–454

    Article  CAS  Google Scholar 

  • Mertens J, Broos K, Wakelin SA, Kowalchuk GA, Springael D, Smolders E (2009) Bacteria, not archaea, restore nitrification in a zinc-contaminated soil. Isme J 3:916–923

    Article  CAS  Google Scholar 

  • Myhre G, Shindell D, Bréon F-M, Collins W, Fuglestvedt J, Huang J, Koch D, Lamarque J-F, Lee D, Mendoza B, Nakajima T, Robock A, Stephens G, Takemura T, Zhang H (2013) Anthropogenic and natural radiative forcing. In: Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change, pp 659–740

  • O’Callaghan M, Gerard EM, Carter PE, Lardner R, Sarathchandra U, Burch G, Ghani A, Bell N (2010) Effect of the nitrification inhibitor dicyandiamide (DCD) on microbial communities in a pasture soil amended with bovine urine. Soil Biol Biochem 42:1425–1436

    Article  CAS  Google Scholar 

  • Prosser JI, Nicol GW (2008) Relative contributions of archaea and bacteria to aerobic ammonia oxidation in the environment. Environ Microbiol 10(11):2931–2941

    Article  CAS  Google Scholar 

  • Qin S, Ding K, Cough T, Hu C, Luo J (2017) Temporal in situ dynamics of N2O reductase activity as affected by nitrogen fertilization and implications for the N2O/(N2O+N2) product ratio and N2O mitigation. Biol Fertil Soils 53:723–727

    Article  CAS  Google Scholar 

  • Rotthauwe JH, Witzel KP, Liesack W (1997) The ammonia monooxygenase structural gene amoA as a functional marker: Molecular fine-scale analysis of natural ammonia-oxidizing popula-tions. Appl Environ Microbiol 63:4704–4712

  • Schauss K, Focks A, Leininger S, Kotzerke A, Heuer H, Thiele-Bruhn S, Sharma S, Wilke BM, Matthies M, Smalla K, Munch JC, Amelung W, Kaupenjohann M, Schloter M, Schleper C (2009) Dynamics and functional relevance of ammonia-oxidizing archaea in two agricultural soils. Environ Microbiol 11:446–456

    Article  CAS  Google Scholar 

  • Shen WS, Lin XG, Shi WM, Min J, Gao N, Zhang HY, Yin R, He XH (2010) Higher rates of nitrogen fertilization decrease soil enzyme activities, microbial functional diversity and nitrification capacity in a Chinese polytunnel greenhouse vegetable land. Plant Soil 337:137–150

    Article  CAS  Google Scholar 

  • Shen W, Ni Y, Gao N, Bian B, Zheng S, Lin X, Chu H (2016) Bacterial community composition is shaped by soil secondary salinization and acidification brought on by high nitrogen fertilization rates. Appl Soil Ecol 108:76–83

    Article  Google Scholar 

  • Stites W, Kraft GJ (2001) Nitrate and chloride loading to groundwater from an irrigated north-central US sand-plain vegetable field. J Environ Qual 30:1176–1184

    Article  CAS  Google Scholar 

  • Throbäck IN, Enwall K, Jarvis Å, Hallin S (2004) Reassessing PCR primers targeting nirS, nirK and nosZ genes for community surveys of denitrifying bacteria with DGGE. FEMS Microbiol Ecol 49:401–417

  • Treusch AH, Leininger S, Kletzin A, Schuster SC, Klenk HP, Schleper C (2005) Novel genes for nitrite reductase and Amo-related proteins indicate a role of uncultivated mesophilic crenarchaeota in nitrogen cycling. Environ Microbiol 7:1985–1995

    Article  CAS  Google Scholar 

  • Valentine DL (2007) Adaptations to energy stress dictate the ecology and evolution of the archaea. Nat Rev Microbiol 5:316–323

    Article  CAS  Google Scholar 

  • Venter JC, Remington K, Heidelberg JF, Halpern AL, Rusch D, Eisen JA, Wu DY, Paulsen I, Nelson KE, Nelson W, Fouts DE, Levy S, Knap AH, Lomas MW, Nealson K, White O, Peterson J, Hoffman J, Parsons R, Baden-Tillson H, Pfannkoch C, Rogers YH, Smith HO (2004) Environmental genome shotgun sequencing of the Sargasso Sea. Science 304:66–74

    Article  Google Scholar 

  • Weiske A, Benckiser G, Herber T, Ottow J (2001) Influence of the nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) in comparison to dicyandiamide (DCD) on nitrous oxide emissions, carbon dioxide fluxes and methane oxidation during 3 years of repeated application in field experiments. Biol Fertil Soils 34:109–117

    Article  CAS  Google Scholar 

  • Wu Y, Lu L, Wang B, Lin X, Zhu J, Cai Z, Yan X, Jia Z (2011) Long-term field fertilization significantly alters community structure of ammonia-oxidizing bacteria rather than archaea in a paddy soil. Soil Sci Soc Am J 75:1431–1439

    Article  CAS  Google Scholar 

  • Xia W, Zhang C, Zeng X, Feng Y, Weng J, Lin X, Zhu J, Xiong Z, Xu J, Cai Z, Jia Z (2011) Autotrophic growth of nitrifying community in an agricultural soil. Isme J 5:1226–1236

    Article  CAS  Google Scholar 

  • Yao H, Gao Y, Nicol GW, Campbell CD, Prosser JI, Zhang L, Han W, Singh BK (2011) Links between ammonia oxidizer community structure, abundance, and nitrification potential in acidic soils. Appl Environ Microbiol 77:4618–4625

    Article  CAS  Google Scholar 

  • Zhang LM, Hu HW, Shen JP, He JZ (2012) Ammonia-oxidizing archaea have more important role than ammonia-oxidizing bacteria in ammonia oxidation of strongly acidic soils. ISME J 6:1032–1045

    Article  CAS  Google Scholar 

  • Zheng X, Han S, Huang Y, Wang Y, Wang M (2004) Re-quantifying the emission factors based on field measurements and estimating the direct N2O emission from Chinese croplands. Glob Biogeochem Cycles 18. https://doi.org/10.1029/2003GB002167

  • Zhu JH, Li XL, Christie P, Li JL (2005) Environmental implications of low nitrogen use efficiency in excessively fertilized hot pepper (Capsicum frutescens L.) cropping systems. Agric Ecosyst Environ 111:70–80

    Article  Google Scholar 

Download references

Funding

This study was financially supported by the National Key Research and Development Program of China (Nos. 2017YFD0200708, 2018YFD0200200, 2017YFD0200100, 2016YFD0200307, 2017YFD0800604), the National Natural Science Foundation of China (No. 41807107), a project from Liaoning province doctoral research start-up fund (20170520106), and the Shenyang science and technology project (17-156-6-00).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiafa Luo.

Additional information

Responsible editor: Weijin Wang

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Shi, Y., Luo, J. et al. Effects of 3,4-dimethylpyrazole phosphate (DMPP) on the abundance of ammonia oxidizers and denitrifiers in two different intensive vegetable cultivation soils. J Soils Sediments 19, 1250–1259 (2019). https://doi.org/10.1007/s11368-018-2155-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-018-2155-4

Keywords