• Soils, Sec 2 • Global Change, Environ Risk Assess, Sustainable Land Use • Research Article
  • Published:

Identification of the artifact contribution to two urban Technosols by coupling a sorting test, chemical analyses, and a least absolute residual procedure

Abstract

Purpose

In the context of urban extension, the depletion of natural resources for construction constitutes a crucial issue. Specifically, in the field of earthworks, the amounts of materials can be massive and pose the crucial problem of resource shortage. Therefore, the reuse of excavated urban soils from foundation layers as new earthwork construction materials appears to be a sustainable and promising solution. Before repurposing, a better knowledge of urban soils and their potential pollutant load is compulsory.

Materials and methods

In this paper, two soils excavated from the town of Paris are studied. After the stripping of their surface, to remove organic matter and surface pollution, the matrixes were submitted to elemental analyses using ICP-OES, C/S measurements, and XRF techniques. The elemental analyses were carried out on the whole materials, on three granulometric fractions (< 80 μm, 80–400 μm, > 400 μm) and on the families of artifacts (i.e., construction and demolition wastes, natural gravel, industrial wastes, magnetic, and non-magnetic slags) found in the soils. The combination of elemental analyses and a least absolute residual (LAR) procedure were used to quantify artifact contributions in all granulometric fractions.

Results and discussion

The soils exhibit evidence of anthropic inputs with high contents of pollutants under the forms of carbonaceous, sulfur mineral and metallic alloys. Carbonaceous and trace pollutions are concentrated in magnetic and non-magnetic slags, while sulfur and strontium pollutions are concentrated in gypsum components. In both cases, all the granulometric fractions (including whole material) can be retrieved as a combination of artifact composition, suggesting that the Technosols mainly result from the mixture of these artifacts. The amounts of natural material, gypsum components, and magnetic slags increase with the fineness of the fractions. In contrary, the amount of non-magnetic slags decrease with the fineness of the fractions and suggests that the processes of slag weathering are not similar: carbonaceous slags are more stable than iron-enriched slags.

Conclusions

The elemental analyses of granulometric fractions of soils and the artifacts using LAR analyses help in identifying the compositions of each granulometric fraction and give insight into the evolution of artifacts in the soil. These tools are also promising regarding the assessment of geo-environmental characteristics of urban soils, which in turn provides relevant information regarding management and reuse.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Adnan SNSBM, Yusoff S, Chua YP (2013) Soil chemistry and pollution study of a closed landfill site at Ampar Tenang, Selangor, Malaysia. Waste Manag Res 31(6):599–612

    Article  CAS  Google Scholar 

  2. AFNOR (1992a) Earthworks classification of materials for use in the construction of embankments and capping layers of road infrastructures. NF P11-300. AFNOR Ed

  3. AFNOR (1992b) Soils: investigation and testing. Granulometric analysis. Hydrometer method. NF P94-057. AFNOR Ed

  4. AFNOR (1993) Soils: investigation and testing. Determination of Atterberg’s limits. Liquid limit test using casagrande apparatus. Plastic limit test on rolled thread. NF P94-051. AFNOR Ed

  5. AFNOR (1996) Soils: investigation and testing. Granulometric analysis. Dry sieving method after washing. NF P94-056. AFNOR Ed

  6. AFNOR (2001) Soil quality—dissolution for the determination of total element content—part 1: dissolution with hydrofluoric and perchloric acids. NF ISO 14869-1. AFNOR Ed

  7. AFNOR (2007) Characterization of waste—determination of loss on ignition in waste, sludge and sediments. NF EN 15169. AFNOR Ed

  8. AFNOR (2008) Tests for mechanical and physical properties of aggregates—part 7: determination of the particle density of filler—pycnometer method. NF EN 1097-7. AFNOR Ed

  9. AFNOR (2009a) Tests for geometrical properties of aggregates—part 11: classification test for the constituents of coarse recycled aggregate. NF EN 933-11. AFNOR Ed

  10. AFNOR (2009b) Water quality—determination of selected elements by inductively coupled plasma optical emission spectrometry (ICP-OES) NF ISO 11885. AFNOR Ed

  11. AFNOR (2012) Tests for chemical properties of aggregates—part 8: sorting test to determine metal content of Municipal Incinerator Bottom Ash (MIBA) Aggregates. NF EN 1744-8. AFNOR Ed

  12. AFNOR (2013) Sludge, treated biowaste, soil and waste—determination of loss on ignition. NF EN 15935. AFNOR Ed

  13. Alekseenko V, Alekseenko A (2014) The abundances of chemical elements in urban soils. J Geochem Explor 147(B):245–249

    CAS  Article  Google Scholar 

  14. Arulrajah A, Piratheepan J, Disfani MM, Bo MW (2013) Geotechnical and geoenvironmental properties of recycled construction and demolition materials in pavement subbase applications. J Mater Civ Eng 25(8):1077–1088

    Article  Google Scholar 

  15. Asakura H, Yamada M, Inoue Y, Watanabe Y, Ono Y (2010) Investigation on the components removed in loss on ignition test of sandy crushed construction and demolition waste. Waste Manag Res 28(1):11–19

    CAS  Article  Google Scholar 

  16. ASTM (2009) Standard practice for classification of soils and soil-aggregate mixtures for highway construction purposes. D3282-09. ASTM International, West Conshohocken

    Google Scholar 

  17. ASTM (2011) Standard practice for classification of soils for engineering purposes (Unified Soil Classification System). D2487-11. ASTM International, West Conshohocken

    Google Scholar 

  18. Bech J, Reverter F, Tume P, Sanchez P, Longan L, Bech J, Olivier T (2011) Pedogeochemical mapping of Al, Ba, Pb, Ti and V in surface soils of Barcelona Province (Catalonia, NE Spain): relationships with soil physicochemical properties. J Geochem Explor 109(1–3):26–37

    CAS  Article  Google Scholar 

  19. Bianchini G, Marrocchino E, Tassinari R, Vaccaro C (2005) Recycling of construction and demolition waste materials : a chemical-mineralogical appraisal. Waste Manag 25(2):149–159

    CAS  Article  Google Scholar 

  20. Biasoli M, Barberis R, Ajmone-Marsan F (2006) The influence of a large city on some soil properties and metals content. Sci Total Environ 356(1–3):154–164

    Article  CAS  Google Scholar 

  21. Blanco-Canqui H, Lal R, Post WM, Izaurralde RC, Shipitalo MJ (2005) Organic carbon influences on soil particle density and rheological properties. Soil Sci Soc Am J 70(4):1407–1414

    Article  CAS  Google Scholar 

  22. BRGM (1973) Geological map Paris n°183. Bureau de Recherches Géologiques et Minières Ed

  23. Bryson GM, Barker AV (2002) Sodium accumulation in soils and plants along Massachusetts roadsides. Commun Soil Sci Anal 33(1–2):67–78

    CAS  Article  Google Scholar 

  24. Burlakovs J, Kaczala F, Vincevica-Gaile Z, Rudovica V, Orupold K, Stapkevica M, Bhatnagar A, Kriipsalu M, Hogland M, Klavins M, Hogland W (2016) Mobility of metals and valorization of sorted fine fraction of waste after landfill excavation. Waste Biomass Valor 7(3):593–602

    CAS  Article  Google Scholar 

  25. Cai M, McBride MB, Li K, Li Z (2017) Bioaccessibility of As and Pb in orchard and urban soils amended with phosphate, Fe oxide and organic matter. Chemosphere 173:153–159

    CAS  Article  Google Scholar 

  26. Cabello Eras JJ, Sagastume Gutierrez A, Hernandez Capote D, Hens L, Vandecasteele C (2013) Improving the environmental performance of an earthwork project using cleaner production strategies. J Clean Prod 47:368–376

    Article  Google Scholar 

  27. Cachada A, Dias AC, Pato P, Mieiro C, Rocha-Santos T, Pereira ME, Ferreira da Silva E, Duarte AC (2013) Major inputs and mobility of potentially toxic elements contamination in urban areas. Environ Monit Assess 185(1):279–294

    CAS  Article  Google Scholar 

  28. Capony A, Muresan B, Dauvergne M, Auriol JC, Ferber V, Jullien A (2013) Monitoring and environmental modeling of earthworks impacts: a road construction case study. Resour Conserv Recy 74:124–133

    Article  Google Scholar 

  29. Chaurand P, Rose J, Briois V, Olivi L, Hazemann JL, Proux O, Domas J, Bottero JY (2007) Environmental impacts of steel slag reused in road construction: a crystallographic and molecular (XANES) approach. J Hazard Mater 139(3):537–542

    CAS  Article  Google Scholar 

  30. Chen TB, Zheng YM, Lei M, Huang ZC, Wu HT, Chen H, Fan KK, Yu K, Wu X, Tian QZ (2005) Assessment of heavy metal pollution in surface soils of urban parks in Beijing, China. Chemosphere 60(4):542–551

    CAS  Article  Google Scholar 

  31. Chindaprasirt P, Boonserm K, Chairuangsri T, Vichit-Vadakan W, Eaimsin T, Sato T, Pimraksa K (2011) Plaster materials from waste calcium sulfate containing chemicals, organic fibers and inorganic additives. Constr Build Mater 25(8):3193–3203

    Article  Google Scholar 

  32. Cornu S, Lucas Y, Lebon E, Ambrosi JP, Luizão F, Rouiller J, Bonnay M, Neal C (1999) Evidence of titanium mobility in soil profiles, Manaus, central Amazonia. Geoderma 91(3–4):281–295

    CAS  Article  Google Scholar 

  33. Coronado M, Dorsal E, Coz A, Viguri JR, Andrés A (2011) Estimation of construction and demolition waste (C&DW) generation and multicriteria analysis of C&DW management alternatives: a case study in Spain. Waste Biomass Valor 2(2):209–225

    Article  Google Scholar 

  34. Cultrone G, Rodriguez-Navarro C, Sebastian E, Cazalla O, De la Torre MJ (2001) Carbonate and silicate phase reactions during ceramic firing. Eur J Mineral 13(3):621–634

    CAS  Article  Google Scholar 

  35. De Kimpe CR, Morel JL (2000) Urban soil management: a growing concern. Soil Sci 165(1):31–40

    Article  Google Scholar 

  36. Ding T, Xiao J (2014) Estimation of building-related construction and demolition waste in Shanghai. Waste Manag 34(11):2327–2334

    Article  Google Scholar 

  37. Douay F, Pruvot C, Roussel H, Ciesielski H, Fourrier H, Proix N, Waterlot C (2008) Contamination of urban soils in an area of northern France polluted by dust emissions of tws smelters. Water Air Soil Pollut 188(1–4):247–260

    CAS  Article  Google Scholar 

  38. Duong TTT, Lee BK (2011) Determining contamination level of heavy metals in road dust from busy traffic areas with different characteristics. J Environ Manag 92(3):554–562

    CAS  Article  Google Scholar 

  39. Eighmy TT, Eusden JD Jr, Marselle K, Hogan J, Domingo D, Krzanowski JE, Stampfli D (1994) Particle petrogenesis ans speciation of elements in MSW incineration bottom ashes. Stud Environ Science 60:111–136

    CAS  Article  Google Scholar 

  40. El Khalil H, Schwartz C, El Hamiani O, Kubiniok J, Morel JL, Boularbah A (2008) Contribution of technic materials to the mobile fraction of metals in urban soils in Marrakech (Morocco). J Soils Sediments 8(1):17–22

    Article  CAS  Google Scholar 

  41. El Khalil H, Schwartz C, El Hamiani O, Kubiniok J, Morel JL, Boularbah A (2013) Distribution of major elements and trace metals as indicators of technosolisation of urban and suburban soils. J Soils Sediments 13(3):519–530

    CAS  Article  Google Scholar 

  42. Folgueras MB, Alonso M, Fernandez FJ (2017) Coal and sewage sludge ashes as sources of rare earth elements. Fuel 192:128–139

    CAS  Article  Google Scholar 

  43. Fontes JC, Matray JM (1993) Geochemistry and origin of formation brines from Paris Basin, France. 2. Saline solutions associated with oil fields. Chem Geol 109(1–4):177–200

    CAS  Article  Google Scholar 

  44. Haecker CJ, Garboczi EJ, Bullard JW, Bohn RB, Sun Z, Shah SP, Voigt T (2005) Modeling the linear elastic properties of Portland cement paste. Cem Concr Res 35(10):1948–1960

    CAS  Article  Google Scholar 

  45. Hammond CR (2003) Handbook of chemistry and Physics. 84th ed. Lide DR (ed) CRC Press, ISBN 978-0-849-30484-2, 2620 p

  46. Hanna K, Lassabatere L, Bechet B (2009) Zinc and lead transfer in a contaminated roadside soil: experimental study and modeling. J Hazard Mater 161(2–3):1499–1505

    CAS  Article  Google Scholar 

  47. Hatry G, Mercier P (1991) L’île Seguin. JCM Ed. Paris, ISBN 2-902667-14-0, 110 p

  48. Herselman JE, Steyn CE, Fey MV (2005) Baseline concentration of Cd, Co, Cr, Cu, Pb, Ni and Zn in surface soils of South Africa. South African J Sci 101(11–12):509–512

    CAS  Google Scholar 

  49. Hillel D (2004) Encyclopedia of soils in the environment, 1st ed. Academic Press

  50. Huang SL, Yeh CT, Chang LF (2010) The transition to an urbanizing world and the demand for natural resources. Curr Opin Environ Sustain 2(3):136–143

    Article  Google Scholar 

  51. Huot H, Simmonot MO, Watteau F, Marion P, Yvon J, De Donato P, Morel JL (2014a) Early transformation and transfer processes in a Technosol developing on iron industry deposits. Eur J Soil Sci 65(4):470–484

    CAS  Article  Google Scholar 

  52. Huot H, Faure P, Biache C, Lorgeoux C, Simonnot MO, Morel JL (2014b) A Technosol as archives of organic matter related to past industrial activities. Sci Total Environ 487:389–398

    CAS  Article  Google Scholar 

  53. Ioannidou D, Vasileios N, Briere R, Zerbi S, Habert G (2015) Land-cover-based indicator to assess the accessibility of resources used in the construction sector. Resour Conserv Recy 94:80–91

    Article  Google Scholar 

  54. Islam MS, Ahmed MK, Habibullah-Al-Mamun M, Raknuzzaman M (2015) Trace elements in different land use soils of Bangladesh and potential ecological risk. Envrion Monit Assess 187:587–597

    Article  CAS  Google Scholar 

  55. IUSS Working Group WRB (2015) World Reference Base for Soil Resources 2014, update 2015 International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. FAO, Rome

    Google Scholar 

  56. Jain P, Kim H, Townsend TG (2005) Heavy metal content in soil reclaimed from a municipal solid waste landfill. Waste Manag 25(1):25–35

    CAS  Article  Google Scholar 

  57. Jani Y, Kaczala F, Marchand C, Hogland M, Kriipsalu M, Hogland W, Kihl A (2016) Characterisation of excavated fine fraction and waste composition from Swedish landfill. Waste Manage Res 34(12):1292–1299

    CAS  Article  Google Scholar 

  58. Jean-Soro L, Le Guern C, Bechet B, Lebeau T, Ringeard MF (2015) Origin of trace elements in an urban garden in Nantes, France. J Soils Sediments 15(8):1802–1812

    CAS  Article  Google Scholar 

  59. Jimenez-Rivero A, Garcia-Navarro J (2017) Exploring factors influencing post-consumer gypsum recycling and landfilling in the European Union. Resour Conserv Recy 116:116–123

    Article  Google Scholar 

  60. Kabata-Pendias A (2010) Trace elements in soils and plants, 4th edn. CRC Press, Boca Raton

    Google Scholar 

  61. Kushnir J (1980) The coprecipitation of strontium, magnesium, sodium and chloride ions with gypsum. An experimental study. Geochim Cosmochim Ac 44(10):1471–1482

    CAS  Article  Google Scholar 

  62. Lee S, Xu Q, Booth M, Townsend TG, Chadik P, Bitton G (2006) Reduced sulfur compounds in gas from construction and demolition debris landfills. Waste Manag 26(5):526–533

    CAS  Article  Google Scholar 

  63. Leguedois S, Séré G, Auclerc A, Cortet J, Huot H, Ouvrard S, Watteau F, Schwartz C, Morel JL (2016) Modelling pedogenesis of Technosols. Geoderma 262:199–212

    Article  Google Scholar 

  64. Lenoir T, Preteseille M, Ricordel S (2016) Contribution of the fiber reinforcement on the fatigue behavior of two cement-modified soils. Int J Fatigue 93(1):71–81

    Article  Google Scholar 

  65. Lin KL, Wu HH, Shie JL, Hwang CL, Cheng A (2010) Recycling waste brick from construction and demolition of buildings as pozzolanic materials. Waste Manage Res 28(7):653–659

    CAS  Article  Google Scholar 

  66. Lopez-Garcia I, Arnau-Jerez I, Campillo N, Hernandez-Cordoba M (2004) Determination of tin and titanium in soils, sediments and sludges using electrothermal atomic spectrometry with slurry sample introduction. Talanta 62(2):413–419

    CAS  Article  Google Scholar 

  67. Lorenz K, Kandeler E (2005) Biochemical characterization of urban soil profiles from Stuttgart, Germany. Soil Biol Biochem 37(7):1373–1385

    CAS  Article  Google Scholar 

  68. Lu Y, Gong Z, Zhang G, Burghardt W (2003) Concentrations and chemical speciations of Cu, Zn, Pb and Cr of urban soils in Nanjing, China. Geoderma 115(1–2):101–111

    CAS  Article  Google Scholar 

  69. Luo W, Lu Y, Wang B, Tong X, Wang G, Shi Y, Wang T, Giesy JP (2009) Distribution and sources of mercury in soils from former industrialized urban areas of Beijing, China. Environ Monit Assess 158:507–517

    CAS  Article  Google Scholar 

  70. Magnusson S, Lundberg K, Svedberg B, Knutsson S (2015) Sustainable management of excavated soil and rock in urban areas—a literature review. J Clean Prod 93:18–25

    Article  Google Scholar 

  71. Mantis I, Voutsa D, Samara C (2005) Assessment of the environmental hazard from municipal and industrial wastewater treatment sludge by employing chemical biological methods. Ecotox Environ Safe 62(3):397–407

    CAS  Article  Google Scholar 

  72. Morel JL, Chenu C, Lorenz K (2015) Ecosystem services provided by soils of urban, industrial, traffic, mining, and military areas (SUITMAs). J Soils Sediments 15(8):1659–1666

    Article  Google Scholar 

  73. Münch D (1993) Concentration profiles of arsenic, cadmium, chromium, copper, lead, mercury, nickel, zinc, vanadium and polynuclear aromatic hydrocarbons (PAH) in forest soil beside an urban road. Sci Total Environ 138(1–3):47–55

    Article  Google Scholar 

  74. Nazzal Y, Rosen MA, Al-Rawabdeh AM (2013) Assessment of metal pollution in urban road dusts from selected highways of the Greater Toronto Area in Canada. Environ Monit Assess 185(2):1847–1858

    CAS  Article  Google Scholar 

  75. Nelson SS, Yonge DR, Barber ME (2009) Effects of road salts on heavy metal mobility in two eastern Washington soils. J Environ Eng – ASCE 137(7):505–510

    Article  CAS  Google Scholar 

  76. Nezat CA, Hatch SA, Uecker T (2017) Heavy metal content in urban residential and park soils: a case study in Spokane, Washington, USA. Appl Geochem 78:186–193

    CAS  Article  Google Scholar 

  77. Norra S, Lanka-Panditha M, Kramar U, Stüben D (2006) Mineralogical and geochemical patterns of urban surface soils, the example of Pforzheim, Germany. Appl Geochem 21(12):2064–2081

    CAS  Article  Google Scholar 

  78. Norra S, Fjer N, Li F, Chu X, Xie X, Stüben D (2008) The influence of different land uses on mineralogical and chemical composition and horizonation of urban soil profiles in Quingdao, China. J Soils Sediments 8(1):4–16

    CAS  Article  Google Scholar 

  79. Ollila HJ, Moilanen A, Tiainen MS, Laitinen RS (2006) SEM-EDS characterization of inorganic material in refuse-derived fuels. Fuel 85(17–18):2586–2592

    CAS  Article  Google Scholar 

  80. Pariente S, Zhevelev HM, Oz A (2016) Human activities modify soil properties in urban parks: a case study of Tel Aviv-Jaffa. J Soils Sediments 16(11):2538–2547

    Article  CAS  Google Scholar 

  81. Poon CS, Yu ATW, Ng LH (2001) On-site sorting of construction and demolition waste in Hong Kong. Resour Conserv Recy 32(2):157–172

    Article  Google Scholar 

  82. Preteseille M, Lenoir T (2016) Structural test at the laboratory scale for the utilization of stabilized fine-grained soils in the subgrades of High Speed Rail infrastructures: experimental aspects. Int J Fatigue 82(3):505–513

    Article  Google Scholar 

  83. Reimann C, de Caritat P (1998) Chemical elements in the environment: factsheets for the geochemist and environmental scientist, 1st edn. Springer-Verlag, Berlin Heidelberg ISBN 978-3-642-72018-5

    Google Scholar 

  84. Rigo C, Zamengo L, Rampazzo G, Argese E (2009) Characterization of a former dump site in the Lagoon of Venice contaminated by municipal solid waste incinerator bottom ash, and estimation of possible environmental risk. Chemosphere 77(4):510–517

    CAS  Article  Google Scholar 

  85. Rivas V, Cendrero A, Hurtado M, Cabral M, Gimenez J, Forte L, del Rio L, Cantù M, Becker A (2006) Geomorphic consequences of urban development and mining activities: an analysis of study areas in Spain and Argentina. Geomorphology 73(3–4):185–206

    Article  Google Scholar 

  86. Rosell L, Orti F, Kasprzyk A, Playa E, Peryt TM (1998) Strontium geochemistry of Miocene primary gypsum: Messinian of southestern Spain and Sicily and Bedenian of Poland. J Sediment Res 68(1):63–79

    CAS  Article  Google Scholar 

  87. Rossiter GG (2007) Classification of urban and industrial soils in the world reference base for soil resources. J Soils Sediments 7(2):96–100

    CAS  Article  Google Scholar 

  88. Saiz Martinez P, Gonzalez Cortina M, Fernandez Martinez F, Rodriguez Sanchez A (2016) Comparative study of three types of fine recycled aggregates from construction and demolition waste (CDW), and their use in masonry mortar fabrication. J Clean Prod 118:162–169

    CAS  Article  Google Scholar 

  89. Salvagio Manta D, Angelone M, Bellanca A, Neri R, Sprovieri M (2002) Heavy metals in urban soils: a case study from the city of Palermo (Sicily), Italy. Sci Total Environ 300(1–3):229–243

    Article  Google Scholar 

  90. Santisteban JI, Mediavilla R, Lopez-Pamo E, Dabrio CJ, Blanca Ruiz Zapata M, Jose Gil Garcia M, Castano S, Martinez-Alfaro PE (2004) Loss on ignition: a qualitative or quantitative method for organic matter and carbonate mineral content in sediments? J Paleolimnol 32(3):287–299

    Article  Google Scholar 

  91. Séré G, Schwarz C, Ouvrard S, Renat JC, Watteau F, Villemin G, Morel JL (2010) Early pedogenic evolution of constructed Technosols. J Soils Sediments 10(7):1246–1254

    Article  CAS  Google Scholar 

  92. Silva RV, de Brito J, Dhir RK (2014) Properties and composition of recycled aggregates from construction and demolition waste suitable for concrete production. Constr Build Mat 65:201–217

    Article  Google Scholar 

  93. Solomon RL, Harford JW (1976) Lead and cadmium in dusts and soils in a small urban community. Environ Sci Technol 10(8):773–777

    CAS  Article  Google Scholar 

  94. Sun XL, Wu SC, Wang HL, Zhao YG, Zhang GL, Man YB, Wong MH (2013) Dealing with spatial outliers and mapping uncertainty for evaluating the effects of urbanization on soil: a case study of soil pH and particle fractions in Hong Kong. Geoderma 195-196:220–233

    Article  Google Scholar 

  95. Sun Y, Zhou Q, Xie X, Liu R (2010) Spatial, sources and risk assessment of heavy metal contamination of urban soils in typical regions of Shenyang, China. J Hazard Mater 174(1–3):455–462

    CAS  Article  Google Scholar 

  96. Tossavainen M, Engstrom F, Yang Q, Menad N, Lidstrom Larsson M, Bjorkman B (2007) Characteristic of steel slag under different cooling conditions. Waste Manag 27(10):1335–1344

    CAS  Article  Google Scholar 

  97. Vassilev SV, Vassileva CG, Baxter D, Andersen LK (2009) A new approach for the combined chemical and mineral classification of the inorganic matter in coal. 2. Potential applications of the classification systems. Fuel 88(2):246–254

    CAS  Article  Google Scholar 

  98. Vassilev SV, Baxter D, Andersen LK, Vassileva CG (2013) An overview of the composition and applications of biomass ash. Part 1. Phase-mineral and chemical composition and classification. Fuel 105:40–76

    CAS  Article  Google Scholar 

  99. Vodyanitskii YN, Savichev AT, Vasil’ev AA, Lobanova ES, Chashchin AN, Prokopovich EV (2010) Contents of heavy alkaline-earth (Sr, Ba) and rare-earth (Y, La, Ce) metals in technogenically contaminated soils. Eurasian Soil Sci 43(7):822–832

  100. Wei B, Yang L (2010) A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China. Microchem J 94(2):99–107

    CAS  Article  Google Scholar 

  101. Wei ZQ, Wu SH, Zhou SL, Li JT, Zhao QG (2014) Soil organic carbon transformation and related properties in urban soil under impervious surfaces. Pedosphere 24(1):56–64

    CAS  Article  Google Scholar 

  102. WHO (1990) Barium, environmental health criteria 107, World Health Organization, Vammala

  103. WHO (1998) Copper, environmental health criteria 200. World Health Organization, Vammala

    Google Scholar 

  104. WHO (2010) Strontium and strontium compounds, concise international chemical assessment document 77, Vammala Finland

  105. Withers PJA, Jarvie HP (2008) Delivery and cycling of phosphorus in rivers: a review. Sci Total Environ 400(1–3):379–395

    CAS  Article  Google Scholar 

  106. Wu J, Ren Y, Wang X, Wang X, Chen L, Liu G (2015) Nitrogen and phosphorus associating with different size suspended solids in roof and road runoff in Beijing, China. Environ Sci Pollut Res 22(20):15788–15795

    CAS  Article  Google Scholar 

  107. Zhao Z, Hazelton P (2016) Evaluation of accumulation and concentration of heavy metals in different urban roadside soil types in Miranda Park, Sydney. J Soils Sediments 16(11):2548–2556

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the French Ministry of Ecology, Energy, Sustainable Development and Spatial Planning and the French National Federation of Public Works. The manuscript benefited from comments and suggestions by two anonymous reviewers.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Thomas Lenoir.

Additional information

Responsible editor: Maxine J. Levin

Electronic supplementary material

ESM 1

(DOCX 73 kb)

ESM 2

(XLSX 724 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lenoir, T., Duc, M., Lassabatere, L. et al. Identification of the artifact contribution to two urban Technosols by coupling a sorting test, chemical analyses, and a least absolute residual procedure. J Soils Sediments 19, 683–701 (2019). https://doi.org/10.1007/s11368-018-2074-4

Download citation

Keywords

  • Carbon
  • Construction and demolition wastes
  • Excavated soils
  • Least absolute regression
  • Sulfur
  • Trace elements
  • Urban soils