Skip to main content
Log in

Foliage application of nitrogen has less influence on soil microbial biomass and community composition than soil application of nitrogen

  • Soils, Sec 3 • Remediation and Management of Contaminated or Degraded Lands • Research Article
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

Many studies have shown the simulated effects of nitrogen (N) deposition on soil microbial community composition by adding N directly to the forest floor but have ignored the N retention process by the canopy. This study was conducted to compare the responses of soil microbial biomass and community composition between soil application of N (SAN) and foliage application of N (FAN).

Materials and methods

A pot experiment was designed with (1) two N application methods (SAN and FAN), (2) three N application levels (5.6, 15.6 and 20.6 g N m−2 year−1), and (3) two tree species (Schima superba Gardn. et Champ. and Pinus massoniana Lamb.) following a nested factorial design. Soil microbial biomass and community composition were determined using phospholipid fatty acids (PLFAs) techniques after 1 and 1.5 years of treatments.

Results and discussion

Nitrogen addition increased (P < 0.05) soil NH4+-N content and soil NO3-N content and decreased (P < 0.05) soil pH and soil microbial (bacterial, fungal, and actinomycete) biomass for both N application methods. Compared with the SAN treatment, the FAN treatment had higher (P < 0.05) pH and lower (P < 0.05) contents of soil NH4+-N and soil NO3-N. Soil microbial biomass and community composition were significantly different between the different N addition levels under the SAN treatment, but they showed no significant difference (P < 0.05) between the different N addition levels under the FAN treatment. The soil microbial biomass in the S. superba soil was higher (P < 0.05) than that in the P. massoniana soil for the FAN treatment, with the opposite trend observed under the SAN treatment. Moreover, redundancy analysis showed that soil microorganisms were significantly correlated with soil pH, soil water content, NH4+-N, and NO3-N.

Conclusions

The results showed that N addition affected soil properties, microbial biomass, and the composition of microbial communities; however, the FAN treatment had less influence on soil properties and soil microorganisms than did the SAN treatment over short time scales, and the extent of this effect was different between coniferous and broadleaf trees.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adriaenssens S, Staelens J, Wuyts K, Samson R, Verheyen K, Boeckx P (2012) Retention of dissolved inorganic nitrogen by foliage and twigs of four temperate tree species. Ecosystems 15:1093–1107

    Article  CAS  Google Scholar 

  • Bardgett RD, Watdle DA (2011) Aboveground-belowground linkages: biotic interactions, ecosystem processes, and global change. Quarterly Rev Biol 86:340–340

    Google Scholar 

  • Bardgett RD, Mawdsley JL, Edwards S, Hobbs PJ, Rodwell JS, Davies WJ (1999) Plant species and nitrogen effects on soil biological properties of temperate upland grasslands. Funct Ecol 13:650–660

    Article  Google Scholar 

  • Blaško R, Hogberg P, Bach LH, Högberg MN (2013) Relations among soil microbial community composition, nitrogen turnover, and tree growth in N-loaded and previously N-loaded boreal spruce forest. For Ecol Manag 302:319–328

    Article  Google Scholar 

  • Bossio DA, Scow KM, Gunapala N, Graham KJ (1998) Determinants of soil microbial communities: effects of agricultural management, season, and soil type on phospholipid fatty acid profiles. Microb Ecol 36:1–12

    Article  CAS  Google Scholar 

  • Cardelús CL, Mack MC, Woods C, DeMarco J, Treseder KK (2009) The influence of tree species on canopy soil nutrient status in a tropical lowland wet forest in Costa Rica. Plant Soil 318:47–61

    Article  CAS  Google Scholar 

  • Chen H, Li DJ, Gurmesa GA, Yu GR, Li LH, Zhang W, Fang HJ, Mo JM (2015) Effects of nitrogen deposition on carbon cycle in terrestrial ecosystems of China: a meta-analysis. Environ Pollut 206:352–360

    Article  CAS  Google Scholar 

  • Creamer CA, de Menezes AB, Krull ES, Sanderman J, Newton-Walters R, Farrell M (2015) Microbial community structure mediates response of soil C decomposition to litter addition and warming. Soil Biol Biochem 80:175–188

    Article  CAS  Google Scholar 

  • Cusack DF, Silver WL, Torn MS, Burton SD, Firestone MK (2011) Changes in microbial community characteristics and soil organic matter with nitrogen additions in two tropical forests. Ecology 92:621–632

    Article  Google Scholar 

  • DeForest JL, Zak DR, Pregitzer KS, Burton AJ (2004) Atmospheric nitrate deposition and the microbial degradation of cellobiose and vanillin in a northern hardwood forest. Soil Biol Biochem 36:965–971

    Article  CAS  Google Scholar 

  • Demoling F, Nilsson LO, Baath E (2008) Bacterial and fungal response to nitrogen fertilization in three coniferous forest soils. Soil Biol Biochem 40:370–379

    Article  CAS  Google Scholar 

  • Fang HJ, Cheng SL, Yu GR, Zheng JJ, Zhang PL (2012) Responses of CO2 efflux from an alpine meadow soil on the Qinghai Tibetan Plateau to multi-form and low-level N addition. Plant Soil 351:177–190

    Article  CAS  Google Scholar 

  • Fang HJ, Cheng SL, Yu GR, Xu MJ, Wang YS, Li LS, Dang XS, Wang L, Li YN (2014) Experimental nitrogen deposition alters the quantity and quality of soil dissolved organic carbon in an alpine meadow on the Qinghai-Tibetan Plateau. Appl Soil Ecol 81:1–11

    Article  Google Scholar 

  • Fenn ME, Ross CS, Schilling SL, Baccus WD, Larrabee MA, Lofgren RA (2013) Atmospheric deposition of nitrogen and sulfur and preferential canopy consumption of nitrate in forests of the Pacific Northwest, USA. For Ecol Manag 302:240–253

    Article  Google Scholar 

  • Frey SD, Knorr M, Parrent JL, Simpson RT (2004) Chronic nitrogen enrichment affects the structure and function of the soil microbial community in temperate hardwood and pine forests. For Ecol Manag 196:159–171

    Article  Google Scholar 

  • Frostegård A, Bååth E (1996) The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biol Fertil Soils 22:59–65

    Article  Google Scholar 

  • Gaige E, Dail DB, Hollinger DY, Davidson EA, Fernandez IJ, Sievering H, White A, Halteman W (2007) Changes in canopy processes following whole-forest canopy nitrogen fertilization of a mature spruce-hemlock forest. Ecosystems 10:1133–1147

    Article  CAS  Google Scholar 

  • Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai ZC, Freney JR, Martinelli LA, Seitzinger SP, Sutton MA (2008) Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320:889–892

    Article  CAS  Google Scholar 

  • Gao Y, He NP, Zhang XY (2014) Effects of reactive nitrogen deposition on terrestrial and aquatic ecosystems. Ecol Eng 70:312–318

    Article  Google Scholar 

  • Gavrichkova O, Kuzyakov Y (2008) Ammonium versus nitrate nutrition of Zea mays and Lupinus albus: effect on root-derived CO2 efflux. Soil Biol Biochem 40:2835–2842

    Article  CAS  Google Scholar 

  • Grayston SJ, Prescott CE (2005) Microbial communities in forest floors under four tree species in coastal British Columbia. Soil Biol Biochem 37:1157–1167

    Article  CAS  Google Scholar 

  • Hoover SER, Ladley JJ, Shchepetkina AA, Tisch M, Gieseg SP, Tylianakis JM (2012) Warming, CO2, and nitrogen deposition interactively affect a plant-pollinator mutualism. Ecol Lett 15:227–234

    Article  Google Scholar 

  • Houle D, Marty C, Duchesne L (2015) Response of canopy nitrogen uptake to a rapid decrease in bulk nitrate deposition in two eastern Canadian boreal forests. Oecologia 177:29–37

    Article  CAS  Google Scholar 

  • Inselsbacher E, Hinko-Najera Umana N, Stange FC, Gorfer M, Schüller E, Ripka K, Zechmeister-Boltenstern S, Hood-Novotny R, Strauss J, Wanek W (2010) Short-term competition between crop plants and soil microbes for inorganic N fertilizer. Soil Biol Biochem 42:360–372

    Article  CAS  Google Scholar 

  • IPCC (2013) Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of IPCC the Intergovernmental Panel on Climate Change

  • Kirk PL (1950) Kjeldahl method for total nitrogen. Anal Chem 22:354–358

    Article  CAS  Google Scholar 

  • Koba K, Hirobe M, Koyama L, Kohzu A, Tokuchi N (2003) Natural 15N abundance of plants and soil N in a temperate coniferous forest. Ecosystems 6:457–469

    Article  CAS  Google Scholar 

  • LeBauer DS, Treseder KK (2008) Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 89:371–379

    Article  Google Scholar 

  • Liang C, Cheng G, Wixon DL, Balser TC (2011) An absorbing Markov chain approach to understanding the microbial role in soil carbon stabilization. Biogeochemistry 106:303–309

    Article  Google Scholar 

  • Liu JX, Zhang DQ, Zhou GY, Faivre-Vuillin B, Deng Q, Wang CL (2008) CO2 enrichment increases nutrient leaching from model forest ecosystems in subtropical China. Biogeosciences 5:1783–1795

    Article  CAS  Google Scholar 

  • Liu XJ, Zhang Y, Han WX, Tang AH, Shen JL, Cui ZL, Vitousek P, Erisman JW, Goulding K, Christie P, Fangmeier A, Zhang FS (2013) Enhanced nitrogen deposition over China. Nature 494:459–462

    Article  CAS  Google Scholar 

  • Liu SE, Li YY, Fang X, Huang WJ, Long FL, Liu JX (2015) Effects of the level and regime of nitrogen addition on seedling growth of four major tree species in subtropical China. Chinese Journal of Plant Ecology 39:950–961

    Article  Google Scholar 

  • Lovett GM, Weathers KC, Arthur MA, Schultz JC (2004) Nitrogen cycling in a northern hardwood forest: do species matter? Biogeochemistry 67:289–308

    Article  CAS  Google Scholar 

  • Lu XK, Mao QG, Gilliam FS, Luo YQ, Mo JM (2014) Nitrogen deposition contributes to soil acidification in tropical ecosystems. Glob Change Biol 20:3790–3801

    Article  Google Scholar 

  • Mehlich A (1984) Mehlich 3 soil test extractant: a modification of Mehlich 2 extractant. Commun Soil Sci Plant Anal 15:1409–1416

    Article  CAS  Google Scholar 

  • Merilä P, Malmivaara-Lamsa M, Spetz P, Stark S, Vierikko K, Derome J, Fritze H (2010) Soil organic matter quality as a link between microbial community structure and vegetation composition along a successional gradient in a boreal forest. Appl Soil Ecol 46:259–267

    Article  Google Scholar 

  • Pardo LH, Fenn ME, Goodale CL, Geiser LH, Driscoll CT, Allen EB, Baron JS, Bobbink R, Bowman WD, Clark CM, Emmett B, Gilliam FS, Greaver TL, Hall SJ, Lilleskov EA, Liu LL, Lynch JA, Nadelhoffer KJ, Perakis SS, Robin-Abbott MJ, Stoddard JL, Weathers KC, Dennis RL (2011) Effects of nitrogen deposition and empirical nitrogen critical loads for ecoregions of the United States. Ecol Appl 21:3049–3082

    Article  Google Scholar 

  • Priha O, Grayston SJ, Hiukka R, Pennanen T, Smolander A (2001) Microbial community structure and characteristics of the organic matter in soils under Pinus sylvestris, Picea abies and Betula pendula at two forest sites. Biol Fertil Soils 33:17–24

    Article  CAS  Google Scholar 

  • Shi LL, Zhang HZ, Liu T, Zhang WX, Shao YH, Ha DL, Li YQ, Zhang CM, Cai XA, Rao XQ, Lin YB, Zhou LX, Zhao P, Ye Q, Zou XM, Fu SL (2016) Consistent effects of canopy vs. understory nitrogen addition on the soil exchangeable cations and microbial community in two contrasting forests. Sci Total Environ 553:349–357

    Article  CAS  Google Scholar 

  • Soil Survey Staff (2014) Keys to soil taxonomy (12th Ed). United States Department of Agriculture and Natural Resources Conservation Service, Washington, DC

  • Sparks JP (2009) Ecological ramifications of the direct foliar uptake of nitrogen. Oecologia 159:1–13

    Article  Google Scholar 

  • Tian DS, Niu SL (2015) A global analysis of soil acidification caused by nitrogen addition. Environ Res Lett 10:10. https://doi.org/10.1088/1748-9326/10/2/024019

    Article  CAS  Google Scholar 

  • Treseder KK (2008) Nitrogen additions and microbial biomass: a meta-analysis of ecosystem studies. Ecol Lett 11:1111–1120

    Article  Google Scholar 

  • Treseder KK, Turner KM, Mack MC (2007) Mycorrhizal responses to nitrogen fertilization in boreal ecosystems: potential consequences for soil carbon storage. Glob Change Biol 13:78–88

    Article  Google Scholar 

  • Wang YS, Cheng SL, Fang HJ, Yu GR, Xu XF, Xu MJ, Wang L, Li XY, Si GY, Geng J, He S (2015) Contrasting effects of ammonium and nitrate inputs on soil CO2 emission in a subtropical coniferous plantation of southern China. Biol Fertil Soils 51:815–825

    Article  CAS  Google Scholar 

  • Wardle DA, Zackrisson O (2005) Effects of species and functional group loss on island ecosystem properties. Nature 435:806–810

    Article  CAS  Google Scholar 

  • Weand MP, Arthur MA, Lovett GM, McCulley RL, Weathers KC (2010a) Effects of tree species and N additions on forest floor microbial communities and extracellular enzyme activities. Soil Biol Biochem 42:2161–2173

    Article  CAS  Google Scholar 

  • Weand MP, Arthur MA, Lovett GM, Sikora F, Weathers KC (2010b) The phosphorus status of northern hardwoods differs by species but is unaffected by nitrogen fertilization. Biogeochemistry 97:159–181

    Article  CAS  Google Scholar 

  • Wortman E, Tomaszewski T, Waldner P, Schleppi P, Thimonier A, Eugster W, Buchmann N, Sievering H (2012) Atmospheric nitrogen deposition and canopy retention influences on photosynthetic performance at two high nitrogen deposition Swiss forests. Tellus Series B-Chemical and Physical Meteorology 64:14. https://doi.org/10.3402/tellusb.v64i0.17216

    Article  CAS  Google Scholar 

  • Xia J, Wan S (2008) Global response patterns of terrestrial plant species to nitrogen addition. New Phytol 179:428–439

    Article  CAS  Google Scholar 

  • Xiong JB, Sun HB, Peng F, Zhang HY, Xue X, Gibbons SM, Gilbert JA, Chu HY (2014) Characterizing changes in soil bacterial community structure in response to short-term warming. FEMS Microbiol Ecol 89:281–292

    Article  CAS  Google Scholar 

  • Xiong QL, Pan KW, Zhang L, Wang YJ, Li W, He XJ, Luo HY (2016) Warming and nitrogen deposition are interactive in shaping surface soil microbial communities near the alpine timberline zone on the eastern Qinghai-Tibet plateau, southwestern China. Appl Soil Ecol 101:72–83

    Article  Google Scholar 

  • Zeng J, Liu XJ, Song L, Lin XG, Zhang HY, Shen CC, Chu H (2016) Nitrogen fertilization directly affects soil bacterial diversity and indirectly affects bacterial community composition. Soil Biol Biochem 92:41–49

    Article  CAS  Google Scholar 

  • Zhang XM, Liu W, Bai YF, Zhang GM, Han XG (2011) Nitrogen deposition mediates the effects and importance of chance in changing biodiversity. Molecular Ecol 20:429–438

    Article  CAS  Google Scholar 

  • Zhang XM, Liu W, Schloter M, Zhang GM, Chen QS, Huang JH, Li LH, Elser JJ, Han XG (2013) Response of the abundance of key soil microbial nitrogen-cycling genes to multi-factorial global changes. PLoS One 8:10

    Google Scholar 

  • Zhang XM, Wei HW, Chen QS, Han XG (2014) The counteractive effects of nitrogen addition and watering on soil bacterial communities in a steppe ecosystem. Soil Biol Biochem 72:26–34

    Article  CAS  Google Scholar 

  • Zhang NL, Wan SQ, Guo JX, Han GD, Gutknecht J, Schmid B, Yu L, Liu WX, Bi J, Wang Z, Ma KP (2015a) Precipitation modifies the effects of warming and nitrogen addition on soil microbial communities in northern Chinese grasslands. Soil Biol Biochem 89:12–23

    Article  CAS  Google Scholar 

  • Zhang W, Shen WJ, Zhu SD, Wan SQ, Luo YQ, Yan JH, Wang KY, Liu L, Dai HT, Li PX, Dai KY, Zhang WX, Liu ZF, Wang FM, Kuang YW, Li ZA, Lin YB, Rao XQ, Li J, Zou B, Cai X, Mo JM, Zhao P, Ye Q, Huang JG, Fu SL (2015b) CAN canopy addition of nitrogen better illustrate the effect of atmospheric nitrogen deposition on forest ecosystem? Sci Rep 5:12. https://doi.org/10.1038/srep11245

    Article  Google Scholar 

  • Zhang HF, Liu HM, Zhao JN, Wang LL, Li G, Huangfu CH, Wang H, Lai X, Li J, Yang DL (2017) Elevated precipitation modifies the relationship between plant diversity and soil bacterial diversity under nitrogen deposition in Stipa baicalensis steppe. Appl Soil Ecol 119:345–353

    Article  Google Scholar 

  • Zheng Y, Kim YC, Tian XF, Chen L, Yang W, Gao C, Song MH, Xu XL, Guo LD (2014) Differential responses of arbuscular mycorrhizal fungi to nitrogen addition in a near pristine Tibetan alpine meadow. FEMS Microbiol Ecol 89:594–605

    Article  CAS  Google Scholar 

Download references

Funding

This study was funded by the National Natural Science Foundation of China (Grant Nos. 41473083 and 41173090).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiong Fang or Zhigang Yi.

Additional information

Responsible editor: Jianming Xue

Electronic supplementary material

ESM 1

(DOC 49.5 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, X., Liu, Y., Li, Y. et al. Foliage application of nitrogen has less influence on soil microbial biomass and community composition than soil application of nitrogen. J Soils Sediments 19, 221–231 (2019). https://doi.org/10.1007/s11368-018-2027-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-018-2027-y

Keywords

Navigation