Advances in research on the use of biochar in soil for remediation: a review

Abstract

Purpose

Soil contamination mainly from human activities remains a major environmental problem in the contemporary world. Significant work has been undertaken to position biochar as a readily-available material useful for the management of contaminants in various environmental media notably soil. Here, we review the increasing research on the use of biochar in soil for the remediation of some organic and inorganic contaminants.

Materials and methods

Bibliometric analysis was carried out within the past 10 years to determine the increasing trend in research related to biochar in soil for contaminant remediation. Five exemplar contaminants were reviewed in both laboratory and field-based studies. These included two inorganic (i.e., As and Pb) and three organic classes (i.e., sulfamethoxazole, atrazine, and PAHs). The contaminants were selected based on bibliometric data and as representatives of their various contaminant classes. For example, As and Pb are potentially toxic elements (anionic and cationic, respectively), while sulfamethoxazole, atrazine, and PAHs represent antibiotics, herbicides, and hydrocarbons, respectively.

Results and discussion

The interaction between biochar and contaminants in soil is largely driven by biochar precursor material and pyrolysis temperature as well as some characteristics of the contaminants such as octanol-water partition coefficient (KOW) and polarity. The structural and chemical characteristics of biochar in turn determine the major sorption mechanisms and define biochar’s suitability for contaminant sorption. Based on the reviewed literature, a soil treatment plan is suggested to guide the application of biochar in various soil types (paddy soils, brownfield, and mine soils) at different pH levels (4–5.5) and contaminant concentrations (< 50 and > 50 mg kg−1).

Conclusions

Research on biochar has grown over the years with significant focus on its properties, and how these affect biochar’s ability to immobilize organic and inorganic contaminants in soil. Few of these studies have been field-based. More studies with greater focus on field-based soil remediation are therefore required to fully understand the behavior of biochar under natural circumstances. Other recommendations are made aimed at stimulating future research in areas where significant knowledge gaps exist.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Agrafioti E, Kalderis D, Diamadopoulos E (2014a) Arsenic and chromium removal from water using biochars derived from rice husk, organic solid wastes and sewage sludge. J Environ Manag 133:309–314

    CAS  Article  Google Scholar 

  2. Agrafioti E, Kalderis D, Diamadopoulos E (2014b) Ca and Fe modified biochars as adsorbents of arsenic and chromium in aqueous solutions. J Environ Manag 146:444–450

    CAS  Google Scholar 

  3. Ahiduzzaman M, Islam AS (2016) Preparation of porous bio-char and activated carbon from rice husk by leaching ash and chemical activation. SpringerPlus 5:1248

    Article  CAS  Google Scholar 

  4. Ahmad M, Rajapaksha AU, Lim JE, Zhang M, Bolan N, Mohan D, Vithanage MS, Lee S, Ok YS (2014) Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere 99:19–23

    CAS  Article  Google Scholar 

  5. Ahmed S, Chughtai S, Keane MA (1998) The removal of cadmium and lead from aqueous solution by ion exchange with Na-Y zeolite. Sep Purif Technol 13:57–64

    CAS  Article  Google Scholar 

  6. Alfen NKV (ed) (2014) Encyclopedia of agriculture and food systems. Davis, USA

    Google Scholar 

  7. Anyika C, Majid ZA, Ibrahim Z, Zakaria MP, Yahya A (2015) The impact of biochars on sorption and biodegradation of polycyclic aromatic hydrocarbons in soils—a review. Environ Sci Pollut Res 22:3314–3341

    CAS  Article  Google Scholar 

  8. Arp HPH, Brown TN, Berger U, Hale S (2017) Ranking REACH registered neutral, ionizable and ionic organic chemicals based on their aquatic persistency and mobility. Environ Sci Processes Impacts 19:939–955

    CAS  Article  Google Scholar 

  9. ATSDR (Agency for Toxic Substances and Disease Registry) (2003) Toxicological profile for Atrazine. US Department of Human and Health Services, Washington, D.C.

    Google Scholar 

  10. ATSDR (Agency for Toxic Substances and Disease Registry) (2011) Toxicological profile for Cadmium. US Department of Human and Health Services, Washington, D.C.

    Google Scholar 

  11. Avisar D, Lester Y, Ronen D (2009) Sulfamethoxazole contamination of a deep phreatic aquifer. Sci Total Environ 407:4278–4282

    CAS  Article  Google Scholar 

  12. Baig SA, Sheng T, Sun C, Xue X, Tan L, Xu X (2014) Arsenic removal from aqueous solutions using Fe3O4-HBC composite: effect of calcination on adsorbents performance. PLoS One 9:e100704

    Article  CAS  Google Scholar 

  13. Beesley L, Marmiroli M, Pagano L, Pigoni V, Fellet G, Fresno T, Vamerali T, Bandiera M, Marmiroli N (2013) Biochar addition to an arsenic contaminated soil increases arsenic concentrations in the pore water but reduces uptake to tomato plants (Solanum lycopersicum). Sci Total Environ 454-455:598–603

    CAS  Article  Google Scholar 

  14. Bian R, Joseph S, Cui L, Pan G, Li L, Liu X, Zhang A, Rutlidge H, Wonge S, Chia C, Marjo C, Gong B, Munroe P, Donne S (2014) A three-year experiment confirms continuous immobilization of cadmium and lead in contaminated paddy field with biochar amendment. J Hazard Mater 272:121–128

    CAS  Article  Google Scholar 

  15. Cao X, Ma L, Gao B, Harris W (2009) Dairy-manure derived biochar effectively sorbs lead and atrazine. Environ Sci Technol 43:3285–3291

    CAS  Article  Google Scholar 

  16. Cao X, Ma L, Liang Y, Gao B, Harris W (2011) Simultaneous immobilization of lead and atrazine in contaminated soils using dairy-manure biochar. Environ Sci Technol 45:4884–4889

    CAS  Article  Google Scholar 

  17. Chen B, Ding J (2012) Biosorption and biodegradation of phenanthrene and pyrene in sterilized and unsterilized soil slurry systems stimulated by Phanerochaete chrysosporium. J Hazard Mater 229:159–169

    Article  CAS  Google Scholar 

  18. Chen B, Yuan M (2011) Enhanced sorption of polycyclic aromatic hydrocarbons by soil amended with biochar. J Soils Sediments 11:62–71

    Article  CAS  Google Scholar 

  19. Chen H, Gao B, Li H, Ma L (2011) Effects of pH and ionic strength on sulfamethoxazole and ciprofloxacin transport in saturated porous media. J Contam Hydrol 126:29–36

    CAS  Article  Google Scholar 

  20. Chen SS, Rotaru AE, Shrestha PM, Malvankar NS, Liu FH, Fan W, Nevin KP, Lovley DR (2014) Promoting interspecies electron transfer with biochar. Sci Rep 4:5019

    CAS  Article  Google Scholar 

  21. Chen Y, Han YH, Cao Y, Zhu YG, Rathinasabapathi B, Ma LQ (2017) Arsenic transport in rice and biological solutions to reduce arsenic risk from rice. Front Plant Sci 8:268

    Google Scholar 

  22. Chi T, Zuo J, Liu F (2017) Performance and mechanism for cadmium and lead adsorption from water and soil by corn straw biochar. Front Environ Sci Eng 11:15

    Article  CAS  Google Scholar 

  23. Cui L, Yan J, Yang Y, Li L, Quan G, Ding C, Chen T, Fu Q, Chang A (2013) Influence of biochar on microbial activities of heavy metals contaminated paddy fields. BioResources 8:5536–5548

    Google Scholar 

  24. Cui L, Pan G, Li L, Bian R, Liu X, Yan J, Quan G, Ding C, Chen T, Liu Y, Liu Y (2016) Continuous immobilization of cadmium and lead in biochar amended contaminated paddy soil: a five-year field experiment. Ecol Eng 93:1–8

    Article  Google Scholar 

  25. Dai Z, Webster TM, Enders A, Hanley KL, Xu J, Thies JE, Lehmann J (2017a) DNA extraction efficiency from soil as affected by pyrolysis temperature and extractable organic carbon of high-ash biochar. Soil Biol Biochem 115:129–136

    CAS  Article  Google Scholar 

  26. Dai Z, Zhang X, Tang C, Muhammad N, Wu J, Brookes PC, Xu J (2017b) Potential role of biochars in decreasing soil acidification—a critical review. Sci Total Environ 581:601–611

    Article  CAS  Google Scholar 

  27. Delwiche KB, Lehmann J, Walter MT (2014) Atrazine leaching from biochar-amended soils. Chemosphere 95:346–352

    CAS  Article  Google Scholar 

  28. Deng H, Yu H, Chen M, Ge C (2014) Sorption of atrazine in tropical soil by biochar prepared from cassava waste. BioResources 9:6627–6643

    Google Scholar 

  29. Ding Y, Liu Y, Liu S, Huang X, Li Z, Tan X, Zeng G, Zhou L (2017) Potential benefits of biochar in agricultural soils: a review. Pedosphere 27:645–661

    Article  Google Scholar 

  30. Droge S, Goss KU (2012) Effect of sodium and calcium cations on the ion-exchange affinity of organic cations for soil organic matter. Environ Sci Technol 46:5894–5901

    CAS  Article  Google Scholar 

  31. Droge ST, Goss KU (2013) Ion-exchange affinity of organic cations to natural organic matter: influence of amine type and nonionic interactions at two different pHs. Environ Sci Technol 47:798–806

    CAS  Article  Google Scholar 

  32. Enell A, Lundstedt S, Arp HP, Josefsson S, Cornelissen G, Kleja DB (2016) Combining leaching and passive sampling to measure the mobility and distribution between porewater, DOC, and colloids of native oxy-PAHs, N-PACs, and PAHs in historically contaminated soil. Environ Sci Technol 50:11797–11805

    CAS  Article  Google Scholar 

  33. Fabietti G, Biasioli M, Barberis R, Marsan FA (2010) Soil contamination by organic and inorganic pollutants at the regional scale: the case of Piedmont, Italy. J Soils Sediments 10:290–300

    CAS  Article  Google Scholar 

  34. Fang Q, Chen B, Lin Y, Guan Y (2013) Aromatic and hydrophobic surfaces of wood-derived biochar enhance perchlorate adsorption via hydrogen bonding to oxygen-containing organic groups. Environ Sci Technol 48:279−288

    Google Scholar 

  35. Fellet G, Marchiol L, Vedove GD, Peressotti A (2011) Application of biochar on mine taillings: effects and perspectives for land reclamation. Chemosphere 83:1262–1267

    CAS  Article  Google Scholar 

  36. Feng Z, Zhu L (2018) Sorption of phenanthrene to biochar modified by base. Front Environ Sci Eng 12:1

    CAS  Article  Google Scholar 

  37. Ferniza-García F, Amaya-Chávez A, Roa-Morales G, Barrera-Díaz CE (2017) Removal of Pb, Cu, Cd, and Zn present in aqueous solution using coupled electrocoagulation-phytoremediation treatment. Int J Electrochem 2017:7681451 11 pp

    Article  CAS  Google Scholar 

  38. Freddo A, Cai C, Reid BJ (2012) Environmental contextualization of potential toxic elements and polycyclic aromatic hydrocarbons in biochar. Environ Pollut 171:18–24

    CAS  Article  Google Scholar 

  39. Galitskaya P, Akhmetzyanova L, Selivanovskaya S (2016) Biochar-carrying hydrocarbon decomposers promote degradation during the early stage of bioremediation. Biogeosciences 13:5739–5752

    CAS  Article  Google Scholar 

  40. Goss KU, Schwarzenbach RP (2001) Linear free energy relationships used to evaluate equilibrium partitioning of organic compounds. Environ Sci Technol 35:1–9

    CAS  Article  Google Scholar 

  41. Gude JCJ, Rietveld LC, Van Halem D (2017) As (III) oxidation by MnO2 during groundwater treatment. Water Res 111:41–51

    CAS  Article  Google Scholar 

  42. Guo M, Uchimiya SM, He Z (2016) Agricultural and environmental applications of biochar: advances and barriers. Soil Sci Society of America Inc., Fitchburg, pp 495–504

    Google Scholar 

  43. Gupta VK, Nayak A, Agarwal S (2015) Bio-adsorbents for remediation of heavy metals: current status and their future prospects. Environ Eng Res 20:1–18

    Article  Google Scholar 

  44. Gurwick NP, Moore LA, Kelly C, Elias P (2013) A systematic review of biochar research, with a focus on its stability in situ and its promise as a climate mitigation strategy. PLoS One 8:e75932

    CAS  Article  Google Scholar 

  45. Hale SE, Lehmann J, Rutherford D, Zimmerman AR, Bachmann RT, Shitumbanuma V, Toole A, Sundkvist KL, Arp HPH, Cornelissen G (2012) Quantifying the total and bioavailable polycyclic aromatic hydrocarbons and dioxins in biochars. Environ Sci Technol 46:2830–2838

    CAS  Article  Google Scholar 

  46. Hale SE, Arp HPH, Kupryianchyk D, Cornelissen G (2016) A synthesis of parameters related to the binding of neutral organic compounds to charcoal. Chemosphere 144:65–74

    CAS  Article  Google Scholar 

  47. Hammes K, Schmidt MW, Smernik RJ, Currie LA, Ball WP, Nguyen TH, Louchouarn P, Houel S, Gustafsson Ö, Elmquist M, Cornelissen G (2007) Comparison of quantification methods to measure fire-derived (black/elemental) carbon in soils and sediments using reference materials from soil, water, sediment and the atmosphere. Glob Biogeochem Cycles 21:GB3016

    Article  CAS  Google Scholar 

  48. Han L, Ro KS, Sun K, Sun H, Wang Z, Libra JA, Xing B (2016) New evidence for high sorption capacity of hydrochar for hydrophobic organic pollutants. Environ Sci Technol 50:13274–13282

    CAS  Article  Google Scholar 

  49. Hao F, Zhao X, Ouyang W, Lin C, Chen S, Shan Y, Lai X (2013) Molecular structure of corncob-derived biochars and the mechanism of atrazine sorption. Agron J 105:773–782

    CAS  Article  Google Scholar 

  50. Hartley W, Dickinson NM, Riby P, Lepp NW (2009) Arsenic mobility in brownfield soils amended with green waste compost or biochar and planted with Miscanthus. Environ Pollut 157:2654–2662

    CAS  Article  Google Scholar 

  51. Herath HMSK, Camps-Arbestain M, Hedley MJ, Kirschbaum MUF, Wang T, Hale R (2015) Experimental evidence for sequestering C with biochar by avoidance of CO2 emissions from original feedstock and protection of native soil organic matter. GCB Bioenergy 7:512–526

    CAS  Article  Google Scholar 

  52. Hilber I, Blum F, Leifeld J, Schmidt HP, Bucheli TD (2012) Quantitative determination of PAHs in biochar: a prerequisite to ensure its quality and safe application. J Agric Food Chem 60:3042–3050

    CAS  Article  Google Scholar 

  53. Hilber I, Bastos AC, Loureiro S, Soja G, Marsz A, Cornelissen G, Bucheli TD (2017a) The different faces of biochar: contamination risk versus remediation tool. J Environ Eng Landsc Manag 25:86–104

    Article  Google Scholar 

  54. Hilber I, Mayer P, Gouliarmou V, Hale SE, Cornelissen G, Schmidt HP, Bucheli TD (2017b) Bioavailability and bioaccessibility of polycyclic aromatic hydrocarbons from (post-pyrolytically treated) biochars. Chemosphere 174:700–707

    CAS  Article  Google Scholar 

  55. Houben D, Evrard L, Sonnet P (2013) Beneficial effects of biochar application to contaminated soils on the bioavailability of Cd, Pb and Zn and the biomass production of rapeseed (Brassica napus). Biomass Bioenergy 57:196–204

    CAS  Article  Google Scholar 

  56. Huggins TM, Haeger A, Biffinger JC, Ren ZJ (2016) Granular biochar compared with activated carbon for wastewater treatment and resource recovery. Water Res 94:225–232

    CAS  Article  Google Scholar 

  57. Jin H, Capareda S, Chang Z, Gao J, Xu Y, Zhang J (2014) Biochar pyrolytically produced from municipal solid wastes for aqueous As(V) removal: adsorption property and its improvement with KOH activation. Bioresour Technol 169:622–629

    CAS  Article  Google Scholar 

  58. Kołtowski M, Charmas B, Skubiszewska-Zięba J, Oleszczuk P (2017) Effect of biochar activation by different methods on toxicity of soil contaminated by industrial activity. Ecotoxicol Environ Saf 136:119–125

    Article  CAS  Google Scholar 

  59. Kookana RS, Sarmah AKL, Zwieten V, Krull E, Singh B (2011) Biochar application to soil: agronomic and environmental benefits and unintended consequences. Adv Agron 112:103–143

    CAS  Article  Google Scholar 

  60. Lehmann J, Joseph S (eds) (2009) Biochar for environmental management: science and technology, 1st edn. Earthscan, London

    Google Scholar 

  61. Lehmann J, Joseph S (eds) (2015) Biochar for environmental management: science, technology and implementation, 2nd edn. Routledge, London

    Google Scholar 

  62. Lehmann J, Rillig MC, Thies J, Masiello CA, Hockaday WC, Crowley D (2011) Biochar effects on soil biota—a review. Soil Biol Biochem 43:1812–1836

    CAS  Article  Google Scholar 

  63. Li X, Shen Q, Zhang D, Mei X, Ran W, Xu Y, Yu G (2013) Functional groups determine biochar properties (pH and EC) as studied by two-dimensional 13C NMR correlation spectroscopy. PLoS One 8:e65949

    CAS  Article  Google Scholar 

  64. Li T, Han X, Liang C, Shohag MJ, Yang X (2015) Sorption of sulphamethoxazole by the biochars derived from rice straw and alligator flag. Environ Technol 36:245–253

    CAS  Article  Google Scholar 

  65. Li H, Liu Y, Chen Y, Wang S, Wang M, Xie T, Wang G (2016) Biochar amendment immobilizes lead in rice paddy soils and reduces its phyto-availability. Sci Rep 6:31616

    CAS  Article  Google Scholar 

  66. Li H, Dong X, Silva EB, Oliveira LM, Chen Y, Ma LQ (2017) Mechanisms of metal sorption by biochars: biochar characteristics and modifications. Chemosphere 178:466–478

    CAS  Article  Google Scholar 

  67. Lian F, Sun B, Song Z, Zhu L, Qi X, Xing B (2014) Physicochemical properties of herb-residue biochar and its sorption to ionizable antibiotic sulfamethoxazole. Chem Eng J 248:128–134

    CAS  Article  Google Scholar 

  68. Libra JA, Ro KS, Kammann C, Funke A, Berge ND, Neubauer Y, Titirici MM, Fühner C, Bens O, Kern J, Emmerich KH (2011) Hydrothermal carbonization of biomass residuals: a comparative review of the chemistry, processes and applications of wet and dry pyrolysis. Biofuels 2:71–106

    CAS  Article  Google Scholar 

  69. Liu WJ, Jiang H, Yu HQ (2015) Development of biochar-based functional materials: toward a sustainable platform carbon material. Chem Rev 115:12251–12285

    CAS  Article  Google Scholar 

  70. Liu S, Huang B, Chai L, Liu Y, Zeng G, Wang X, Wei Z, Meirong S, Jiaqin D, Zhou Z (2017) Enhancement of As (v) adsorption from aqueous solution by a magnetic chitosan/biochar composite. RSC Adv 7:10891–10900

    CAS  Article  Google Scholar 

  71. Loganathan VA, Feng Y, Sheng GD, Clement TP (2009) Crop-residue-derived char influences sorption, desorption and bioavailability of atrazine in soils. Soil Sci Soc Am J 73:967–974

    CAS  Article  Google Scholar 

  72. Lu K, Yang X, Shen J, Robinson B, Huang H, Liu D, Bolan N, Pei J Wang H (2014) Effect of bamboo and rice straw biochars on the bioavailability of Cd, Cu, Pb and Zn to Sedum plumbizincicola. Agric Ecosyst Environ 191:124–132

    CAS  Article  Google Scholar 

  73. Major J (2010) Guidelines on practical aspects of biochar application to field soil in various soil management systems. International Biochar Initiative, Westerville

  74. Manning BA, Fendorf SE, Bostick B, Suarez DL (2002) Arsenic (III) oxidation and arsenic (V) adsorption reactions on synthetic birnessite. Environ Sci Technol 36:976–981

    CAS  Article  Google Scholar 

  75. Manyà JJ (2012) Pyrolysis for biochar purposes: a review to establish current knowledge gaps and research needs. Environ Sci Technol 46:7939–7954

    Article  CAS  Google Scholar 

  76. McLaughlin H, Anderson PS, Shields FE, Reed TB (2009) All biochars are not created equal, and how to tell them apart. IBI Conference, Boulder Colorado

  77. Nag SK, Kookana R, Smith L, Krull E, Macdonald LM, Gill G (2011) Poor efficacy of herbicides in biochar-amended soils as affected by their chemistry and mode of action. Chemosphere 84:1572–1577

    CAS  Article  Google Scholar 

  78. Najar AM, Tidmarsh IS, Ward MD (2010) Lead (II) complexes of bis-and tris-bidentate compartmental ligands based on pyridyl-pyrazole and pyridyl-triazole fragments: coordination networks and a discrete dimeric box. CrystEngComm 12:3642–3650

    CAS  Article  Google Scholar 

  79. Nartey O, Zhao B (2014) Biochar preparation, characterization and adsorptive capacity and its effects on bioavailability of contaminants: an overview. Adv Mater Sci Eng 2014:715398 12 pp

    Article  CAS  Google Scholar 

  80. Ni N, Song Y, Shi R, Liu Z, Bian Y, Wang F, Yang X, Gu C, Jiang X (2017) Biochar reduces the bioaccumulation of PAHs from soil to carrot (Daucus carota L.) in the rhizosphere: a mechanism study. Sci Total Environ 601:1015–1023

    Article  CAS  Google Scholar 

  81. Ogbonnaya U, Semple KT (2013) Impact of biochar on organic contaminants in soil: a tool for mitigating risk? Agronomy 3:349–375

    CAS  Article  Google Scholar 

  82. Ogbonnaya UO, Thomas J, Fasina SA, Semple KT (2016) Impact of two contrasting biochars on the bio-accessibility of 14C-naphthalene in soil. Environ Technol Innov 6:80–93

    Article  Google Scholar 

  83. Pan JJ, Jiang J, Qian W, Xu R (2015) Arsenate adsorption from aqueous solution onto Fe(III)-modified crop straw biochars. Environ Eng Sci 32:922–929

    CAS  Article  Google Scholar 

  84. Park JH, Choppala G, Lee SJ, Bolan N, Chung JW, Edraki M (2013a) Comparative sorption of Pb and cd by biochars and its implication for metal immobilization in soils. Water Air Soil Pollut 224:1711

    Article  CAS  Google Scholar 

  85. Park J, Hung I, Gan Z, Rojas OJ, Lim KH, Park S (2013b) Activated carbon from biochar: influence of its physicochemical properties on the sorption characteristics of phenanthrene. Bioresour Technol 149:383–389

    CAS  Article  Google Scholar 

  86. Paz-Ferreiro J, Lu H, Fu S, Mendez A, Gasco G (2014) Use of phytoremediation and biochar to remediate heavy metal polluted soils: a review. Solid Earth 5:65–75

    Article  Google Scholar 

  87. Pignatello JJ, Mitch WA, Xu W (2017) Activity and reactivity of pyrogenic carbonaceous matter toward organic compounds. Environ Sci Technol 51:8893–8908

    CAS  Article  Google Scholar 

  88. Qian K, Kumar A, Zhang H, Bellmer D, Huhnke R (2015) Recent advances in the utilization of biochar. Renew Sust Energ Rev 42:1055–1064

    CAS  Article  Google Scholar 

  89. Rajapaksha AU, Chen SS, Tsang DCW, Zhang M, Vithanage M, Mandal S, Gao B, Bolan NS, Ok YS (2016) Engineered/designer biochar for contaminant removal/immobilization from soil and water: potential and implication of biochar modification. Chemosphere 148:276–291

    CAS  Article  Google Scholar 

  90. Rawal A, Joseph SD, Hook JM, Chia CH, Munroe PR, Donne S, Lin Y, Phelan D, Mitchell DR, Pace B, Horvat J, Webber JB (2016) Mineral−biochar composites: molecular structure and porosity. Environ Sci Technol 50:7706–7714

    CAS  Article  Google Scholar 

  91. Reddy K, Xie T, Dastgheibi S (2014) Evaluation of biochar as a potential filter media for the removal of mixed contaminants from urban storm water runoff. J Environ Eng 140:1943–7870

    Google Scholar 

  92. Reemtsma T, Berger U, Arp HPH, Gallard H, Knepper TP, Neumann M, Quintana JB, Voogt PD (2016) Mind the gap: persistent and mobile organic compounds-water contaminants that slip through. Environ Sci Technol 50:10308–10315

    CAS  Article  Google Scholar 

  93. Rombolà AG, Meredith W, Snape CE, Baront S, Genesio L, Vaccari FP, Franco M, Fabbri D (2015) Fate of soil organic carbon and polycyclic aromatic hydrocarbons in a vineyard soil treated with biochar. Environ Sci Technol 49:11037–11044

    Article  CAS  Google Scholar 

  94. Samsuri AW, Zadeh FS, Bardan BJ (2013) Adsorption of As(III) and As(V) by Fe coated biochars and biochars produced from empty fruit bunch and rice husk. J Environ Chem Eng 1:981–988

    CAS  Article  Google Scholar 

  95. Shimabuku KK, Kearns JP, Martinez JE, Mahoney RB, Moreno-Vasquez L, Summers RS (2016) Biochar sorbents for sulfamethoxazole removal from surface water, stormwater, and wastewater effluent. Water Res 96:236–245

    CAS  Article  Google Scholar 

  96. Silvani L, Vrchotova B, Kastanek P, Demnerova K, Pettiti I, Papini MP (2017) Characterizing biochar as alternative sorbent for oil spill remediation. Sci Rep 7

  97. Singh B, Fang Y, Cowie BCC, Thomsen L (2014) NEXAFS and XPS characterization of carbon functional groups of fresh and aged biochars. Org Geochem 77:1–10

    CAS  Article  Google Scholar 

  98. Soni N, Leon RG, Erickson JE, Ferrell JA, Silveira ML (2015) Biochar decreases atrazine and pendimethalin preemergence herbicidal activity. Weed Technol 29:359–366

    Article  Google Scholar 

  99. Spokas KA, Novak JM, Masiello CA, Johnson MG, Colosky EC, Ippolito JA, Trigo C (2014) Physical disintegration of biochar: an overlooked process. Environ Sci Technol Lett 1:326–332

    CAS  Article  Google Scholar 

  100. Sposito G (2008) The chemistry of soils. Oxford University Press, New York

    Google Scholar 

  101. Srinivasan P, Sarmah AK (2015) Characterisation of agricultural waste-derived biochars and their sorption potential for sulfamethoxazole in pasture soil: a spectroscopic investigation. Sci Total Environ 502:471–480

    CAS  Article  Google Scholar 

  102. Stefaniuk M, Oleszczuk P, Różyło K (2017) Co-application of sewage sludge with biochar increases disappearance of polycyclic aromatic hydrocarbons from fertilized soil in long term field experiment. Sci Total Environ 599:854–862

    Article  CAS  Google Scholar 

  103. Sun K, Keiluweit M, Kleber M, Pan Z, Xing B (2011) Sorption of fluorinated herbicides to plant biomass-derived biochars as a function of molecular structure. Bioresour Technol 102:9897–9903

    CAS  Article  Google Scholar 

  104. Sun K, Kang M, Zhang Z, Jin J, Wang Z, Pan Z, Dongyu X, Wu F, Xing B (2013) Impact of deashing treatment on biochar structural properties and potential sorption mechanisms of phenanthrene. Environ Sci Technol 47:11473–11481

    CAS  Article  Google Scholar 

  105. Tamtam F, Oort F, Bot B, Dinh T, Mompelat S, Chevreuil M, Lamy I, Thiry M (2011) Assessing the fate of antibiotic contaminants in metal contaminated soils four years after cessation of long-term waste water irrigation. Sci Total Environ 409:540–547

    CAS  Article  Google Scholar 

  106. Tan X, Liu Y, Zeng G, Wang X, Hu X, Gu Y, Yang Z (2015) Application of biochar for the removal of pollutants from aqueous solutions. Chemosphere 125:70–85

    CAS  Article  Google Scholar 

  107. Tan G, Sun W, Xu Y, Wang H, Xu N (2016) Sorption of mercury(II) and atrazine by biochar, modified biochars and biochar based activated carbon in aqueous solution. Bioresour Technol 211:727–735

    CAS  Article  Google Scholar 

  108. Ter Laak TL, Barendregt A, Hermens JL (2006) Freely dissolved pore water concentrations and sorption coefficients of PAHs in spiked, aged, and field-contaminated soils. Environ Sci Technol 40:2184–2190

    Article  CAS  Google Scholar 

  109. Tran HN, You SJ, Chao HP (2016) Effect of pyrolysis temperatures and times on the adsorption of cadmium onto orange peel derived biochar. Waste Manag Res 34:129–138

    CAS  Article  Google Scholar 

  110. Treacy MM, Higgins JB (2007) Collection of simulated XRD powder patterns for zeolites fifth (5th) revised edition. Elsevier, New York

    Google Scholar 

  111. Tripathi M, Sahu JN, Ganesan P (2016) Effect of process parameters on production of biochar from biomass waste through pyrolysis: a review. Renew Sust Energ Rev 55:467–481

    CAS  Article  Google Scholar 

  112. Tsai WT, Liu SC, Chen HR, Chang YM, Tsai YL (2012) Textural and chemical properties of swine-manure-derived biochar pertinent to its potential use as a soil amendment. Chemosphere 89:198–203

    CAS  Article  Google Scholar 

  113. Uchimiya M (2014) Influence of pH, ionic strength, and multidentate ligand on the interaction of Cd with biochars. ACS Sustain Chem Eng 4:2019–2027

    Article  CAS  Google Scholar 

  114. Uchimiya M, Wartelle LH, Klasson KT, Fortier CA, Lima IM (2011a) Influence of pyrolysis temperature on biochar property and function as a heavy metal sorbent in soil. J Agric Food Chem 59:2501–2510

    CAS  Article  Google Scholar 

  115. Uchimiya M, Chang S, Klasson KT (2011b) Screening biochars for heavy metal retention in soil: role of oxygen functional groups. J Hazard Mater 190:432–441

    CAS  Article  Google Scholar 

  116. Uchimiya M, Bannon DI, Wartelle LH, Lima IM, Klasson KT (2012) Lead retention by broiler litter biochars in small arms range soil: impact of pyrolysis temperature. J Agric Food Chem 60:5035–5044

    CAS  Article  Google Scholar 

  117. Ungureanu G, Santos S, Boaventura R, Botelho C (2015) Arsenic and antimony in water and wastewater: overview of removal techniques with special reference to latest advances in adsorption. J Environ Manag 151:326–342

    CAS  Article  Google Scholar 

  118. Wang D, Zhang W, Hao X, Zhou D (2013) Transport of biochar particles in saturated granular media: effects of pyrolysis temperature and particle size. Environ Sci Technol 47:821–828

    CAS  Article  Google Scholar 

  119. Wang Z, Liu G, Zheng H, Li F, Ngo HH, Guo W, Liu C, Chen L, Xing B (2014) Investigating the mechanisms of biochar’s removal of lead from solution. Bioresour Technol 177:308–317

    Article  CAS  Google Scholar 

  120. Wang S, Gao B, Li Y, Mosa A, Zimmerman AR, Ma LQ, Harrisb WG, Migliaccio KW (2015a) Manganese oxide-modified biochars: preparation, characterization, and sorption of arsenate and lead. Bioresour Technol 181:13–17

    CAS  Article  Google Scholar 

  121. Wang X, Peng B, Tan C, Ma L, Rathinasabapathi B (2015b) Recent advances in arsenic bioavailability, transport, and speciation in rice. Environ Sci Pollut Res 22:5742–5750

    CAS  Article  Google Scholar 

  122. Wang M, Zhu Y, Cheng L, Andserson B, Zhao X, Wang D, Ding A (2018) Review on utilization of biochar for metal-contaminated soil and sediment remediation. J Environ Sci 63:156–173

    Article  Google Scholar 

  123. Waqas M, Li G, Khan S, Shamshad I, Reid BJ, Qamar Z, Chao C (2015) Application of sewage sludge and sewage sludge biochar to reduce polycyclic aromatic hydrocarbons (PAH) and potentially toxic elements (PTE) accumulation in tomato. Environ Sci Pollut Res 22:12114–12123

    CAS  Article  Google Scholar 

  124. Wu M, Pan B, Zhang D, Xiao D, Li H, Wang C, Ning P (2013) The sorption of organic contaminants on biochars derived from sediments with high organic carbon content. Chemosphere 90:782–788

    CAS  Article  Google Scholar 

  125. Xiao L, Bi E, Du B, Zhao X, Xing C (2014) Surface characterization of maize straw-derived biochars and their sorption performance for MTBE and benzene. Environ Earth Sci 71:5195–5205

    CAS  Article  Google Scholar 

  126. Xiong B, Zhang Y, Hou Y, Arp HPH, Reid BJ, Cai C (2017) Enhanced biodegradation of PAHs in historically contaminated soil by M. gilvum inoculated biochar. Chemosphere 182:316–324

    CAS  Article  Google Scholar 

  127. Xu RK, Zhao AZ (2013) Effects of biochars on the adsorption of Cu(II), Pb(II) and Cd(II) by three variable charge soils from southern China. Envron Sci Pollut Res 20:8491–8501

    CAS  Article  Google Scholar 

  128. Xu HJ, Wang XH, Li H, Yao HY, Su JQ, Zhu YG (2014) Biochar impacts soil microbial community composition and nitrogen cycling in an acidic soil planted with rape. Environ Sci Technol 48:9391–9399

    CAS  Article  Google Scholar 

  129. Xu P, Sun CX, Ye XZ, Xiao WD, Zhang Q, Wang Q (2016) The effect of biochar and crop straws on heavy metal bioavailability and plant accumulation in a Cd and Pb polluted soil. Ecotoxicol Environ Saf 132:94–100

    CAS  Article  Google Scholar 

  130. Yamaguchi N, Nakamura T, Dong D, Takahashi Y, Amachi S, Makino T (2011) Arsenic release from flooded paddy soils is influenced by speciation, Eh, pH, and iron dissolution. Chemosphere 83:925–932

    CAS  Article  Google Scholar 

  131. Yang F, Zhao L, Gao B, Xu X, Cao X (2016a) The interfacial behavior between biochar and soil minerals and its effect on biochar stability. Environ Sci Technol 50:2264–2271

    CAS  Article  Google Scholar 

  132. Yang X, Liu J, McGrouther K, Huang H, Lu K, Guo X, He L, Lin X, Che L, Ye Z, Wang H (2016b) Effect of biochar on the extractability of heavy metals (Cd, Cu, Pb, and Zn) and enzyme activity in soil. Environ Sci Pollut Res 23:974–984

    CAS  Article  Google Scholar 

  133. Yao Y, Gao B, Chen H, Jiang L, Inyang M, Zimmerman AR, Cao X, Yang L, Xue Y, Li H (2012) Adsorption of sulfamethoxazole on biochar and its impact on reclaimed water irrigation. J Hazard Mater 209–210:408–413

    Article  CAS  Google Scholar 

  134. Yao Y, Gao B, Fang J, Zhang M, Chen H, Zhou Y, Creamer AE, Sun Y, Yang L (2014) Characterization and environmental applications of clay–biochar composites. Chem Eng J 242:136–143

    CAS  Article  Google Scholar 

  135. Yavari S, Malakahmad A, Sapari NB (2015) Biochar efficiency in pesticides sorption as a function of production variables—a review. Environ Sci Pollut Res 22:13824–13841

    CAS  Article  Google Scholar 

  136. Yokoyama Y, Tanaka K, Takahashi Y (2012) Differences in the immobilization of arsenite and arsenate by calcite. Geochim Cosmochim Acta 91:202–219

    CAS  Article  Google Scholar 

  137. Yu L, Yuan Y, Tang J, Wang Y, Zhou S (2015) Biochar as an electron shuttle for reductive dechlorination of pentachlorophenol by Geobacter sulfurreducens. Sci Rep 5:16221

    CAS  Article  Google Scholar 

  138. Yu Z, Qiu W, Wang F, Lei M, Wang D, Song Z (2017) Effects of manganese oxide-modified biochar composites on arsenic speciation and accumulation in an indica rice (Oryza sativa) cultivar. Chemosphere 168:341–349

    CAS  Article  Google Scholar 

  139. Zama EF, Zhu YG, Reid BJ, Sun GX (2017) The role of biochar properties in influencing the sorption and desorption of Pb(II), Cd(II) and As(III) in aqueous solution. J Clean Prod 148:127–136

    CAS  Article  Google Scholar 

  140. Zand AD, Grathwoh P (2016) Enhanced immobilization of polycyclic aromatic hydrocarbons in contaminated soil using forest wood-derived biochar and activated carbon under saturated conditions, and the importance of biochar particle size. Pol J Environ Stud 25:427–441

    CAS  Article  Google Scholar 

  141. Zhang X, Wang H, He L, Lu K, Sarmah A, Li J, Bolan NS, Pei J, Huang H (2013) Using biochar for remediation of soils contaminated with heavy metals and organic pollutants. Environ Sci Pollut Res 20:8472–8483

    CAS  Article  Google Scholar 

  142. Zhang W, Zheng J, Zheng P, Qiu R (2015) Atrazine immobilization on sludge derived biochar and the interactive influence of coexisting Pb(II) or Cr(VI) ions. Chemosphere 134:438–445

    CAS  Article  Google Scholar 

  143. Zhao L, Cao X, Zheng W, Scott JW, Sharma BK, Chen X (2016) Copyrolysis of biomass with phosphate fertilizers to improve biochar carbon retention, slow nutrient release, and stabilize heavy metals in soil. ACS Sustain Chem Eng 4:1630–1636

    CAS  Article  Google Scholar 

  144. Zheng RL, Cai C, Liang JH, Huang Q, Chen Z, Huang YZ, Arp HP, Sun GX (2012) The effects of biochars from rice residue on the formation of iron plaque and the accumulation of Cd, Zn, Pb, As in rice (Oryza sativa) seedlings. Chemosphere 89:856–862

    CAS  Article  Google Scholar 

  145. Zheng H, Wang Z, Zhao J, Herbert S, Xing B (2013) Sorption of antibiotic sulfamethoxazole varies with biochars produced at different temperatures. Environ Pollut 181:60–67

    CAS  Article  Google Scholar 

  146. Zheng R, Chen Z, Cai C, Tie B, Liu X, Reid BJ, Huang Q, Lei M, Sun G, Baltrėnaitė E (2015) Mitigating heavy metal accumulation into rice (Oryza sativa) using biochar amendment—a field experiment in Hunan, China. Environ Sci Pollut Res 22:11097–11108

    CAS  Article  Google Scholar 

  147. Zhu YG, Su JQ, Cao Z, Xue K, Quensen J, Guo GX, Yang YF, Zhou J, Chu HY, Tiedje JM (2016) A buried Neolithic paddy soil reveals loss of microbial functional diversity after modern rice cultivation. Sci Bull 61:1052–1060

    Article  Google Scholar 

  148. Zhu X, Chen B, Zhu L, Xing B (2017) Effects and mechanisms of biochar-microbe interactions in soil improvement and pollution remediation: a review. Environ Pollut 227:98–115

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Key Research and Development Program of China (2016YFD0800400, 2017YFD0800303), the National Natural Science Foundation of China (No. 41571130062, 41371459), and CAS-TWAS president’s fellowship for postgraduate studies.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Guo-Xin Sun or Yong-Guan Zhu.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Additional information

Responsible editor: Caixian Tang

Electronic supplementary material

ESM 1

(DOCX 422 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zama, E.F., Reid, B.J., Arp, H.P.H. et al. Advances in research on the use of biochar in soil for remediation: a review. J Soils Sediments 18, 2433–2450 (2018). https://doi.org/10.1007/s11368-018-2000-9

Download citation

Keywords

  • Contaminants
  • Field
  • Immobilization
  • Inorganic
  • Laboratory
  • Organic
  • Sorption