Journal of Soils and Sediments

, Volume 18, Issue 9, pp 3020–3030 | Cite as

Enhanced dewatering optimizes compactibility of processed dredged material

  • Katja OingEmail author
  • Alexander Gröngröft
  • Annette Eschenbach
Sediments, Sec 5 • Sediment Management • Research Article



The utilization of dredged material in dike construction as a substitute for traditionally used aged marsh sediment is considered an advisable option with respect to ecological as well as economic aspects. As a prerequisite to the application, the equivalency with respect to soil physical and mechanical properties of the materials has to be verified. Previous investigations on the compactibility of dredged materials used for dike construction had shown that the bulk densities of these materials were considerably lower than bulk densities of aged marsh sediments. The aim of the investigations presented in this paper was to analyze whether the compactibility of the processed dredged material could be improved by enhanced dewatering of the material prior to construction. It was hypothesized that a decreased water content of the material would allow higher bulk densities to be achieved during construction and hence the soil physical properties would become more comparable to those of the aged marsh sediments.

Materials and methods

To examine whether the compactibility of dredged material can be enhanced by pre-drying, Proctor tests were carried out at different initial water contents. Moreover, it was examined whether the temperature of oven-drying at 30 and 105 °C affects the compactibility of these materials and whether ripening, i.e., the repeated drying and wetting of the dredged material under natural and laboratory conditions, can improve their compactibility.

Results and discussion

The investigations on the effect of the various further processing methods showed that the compactibility and therefore the suitability of processed dredged material for dike construction can be improved by air-drying. A linear relationship between dehydration and Proctor density was found. Air-drying to water contents of 10% dry weight (DW) resulted in an improvement of the Proctor density of up to 11%. However, the tests on the effect of the drying temperature on the compactibility showed that oven-drying had no additional effect on the compactibility of the dredged materials. Ripening under laboratory and natural conditions did not lead to statistically significant changes in the compactibility of the processed dredged material either.


Air-drying of processed dredged material to water contents less than 10% DW is considered to be a useful pre-treatment option to improve the compaction behavior of processed dredged material and to obtain a better functional equivalency with traditionally used dike construction materials such as fine-grained aged marsh sediments.


Aged marsh sediments Air-drying Compactibility Oven-drying Processed dredged material Ripening 



This study was funded by Hamburg Port Authority (HPA). The authors would like to thank Julia Gebert for valuable advice and ideas during the preparation of this manuscript.


  1. Aragón A, García MG, Filgueira RR, Pachepsky YA (2000) Maximum compactibility of argentine soils from the proctor test: the relationship with organic carbon and water content. Soil Till Res 56(3–4):197–204CrossRefGoogle Scholar
  2. Ball BC, Campbell DJ, Hunter EA (2000) Soil compactibility in relation to physical and organic properties at 156 sites in UK. Soil Till Res 57(1):83–91CrossRefGoogle Scholar
  3. Baumgartl T, Horn R (1991) Effect of aggregate stability on soil compaction. Soil Till Res 19(2–3):203–213CrossRefGoogle Scholar
  4. Berger K, Gröngröft A, Harms C (2011) Water balance and efficiency of landfill covers composed of layers of dredged material: results from long-term measurements in Northern Germany. Pedologist 54(3):285–293Google Scholar
  5. Blanco-Canqui H, Shapiro CA, Wortmann CS, Drijber RA, Mamo M, Shaver TM, Ferguson RB (2013) Soil organic carbon: the value to soil properties. J Soil Water Conserv 68(5):129A–134ACrossRefGoogle Scholar
  6. Brils J, de Boer P, Mulder J, de Boer E (2014) Reuse of dredged material as a way to tackle societal challenges. J Soils Sediments 14(9):1638–1641CrossRefGoogle Scholar
  7. Cantré S, Saathoff F (2013) Investigation of dredged materials in combination with geosynthetics used in dike construction. Procedia Eng 57:213–221CrossRefGoogle Scholar
  8. Cantré S, Große AK, Neumannm R, Nitschke E, Henneberg M, Saathoff F (2013) Fine-grained organic dredged materials for dike cover layers—material characterisation and experimental results. In: XX World Dredging Congress and Exhibition 1-14Google Scholar
  9. Chenu C, Le Bissonnais Y, Arrouays D (2000) Organic matter influence on clay wettability and soil aggregate stability. SSAJ 64(4):1479–1486CrossRefGoogle Scholar
  10. Denef K, Six J, Bossuyt H, Frey SD, Elliott ET, Merckx R, Paustian K (2001) Influence of dry–wet cycles on the interrelationship between aggregate, particulate organic matter, and microbial community dynamics. Soil Biol Biochem 33(12):1599–1611CrossRefGoogle Scholar
  11. Detzner HD, Knies R (2004) Treatment and beneficial use of dredged sediments from the port of Hamburg. Proceedings of the World Dredging Congress XVII, Dredging in a Sensitive Environment, Hamburg, Germany, InGoogle Scholar
  12. Díaz Zorita M, Grosso GA (2000) Effect of soil texture, organic carbon and water retention on the compactibility of soils from the Argentinean pampas. Soil Till Res 54(1–2):121–126CrossRefGoogle Scholar
  13. DIN 18122-1 (1997) Baugrund, Untersuchung von Bodenproben - Zustandsgrenzen (Konsistenzgrenzen) - Teil 1: Bestimmung der Fließ- und Ausrollgrenze. Beuth Verlag BerlinGoogle Scholar
  14. DIN 18127 (2008) Baugrund, Untersuchung von Bodenproben - Proctorversuch. Beuth Verlag BerlinGoogle Scholar
  15. DIN EN 15936-11 (2012) Schlamm, behandelter Bioabfall, Boden und Abfall - Bestimmung des gesamten organischen Kohlenstoffs (TOC) mittels trockener Verbrennung. Beuth Verlag BerlinGoogle Scholar
  16. DIN EN ISO 17892-3 (2016) Geotechnische Erkundung und Untersuchung - Laborversuche an Bodenproben - Teil 3: Bestimmung der Korndichte. Beuth Verlag BerlinGoogle Scholar
  17. DIN ISO 11277 (2002) Bodenbeschaffenheit - Bestimmung der Partikelgrößenverteilung in Mineralböden - Verfahren mittels Siebung und Sedimentation. Beuth Verlag BerlinGoogle Scholar
  18. DIN ISO 11461 (2014) Bodenbeschaffenheit - Bestimmung des Wassergehalts des Bodens als Volumenanteil mittels Stechzylinder - Gravimetrisches Verfahren. Beuth Verlag BerlinGoogle Scholar
  19. Farooq K, Khalid U, Mujtaba H (2016) Prediction of compaction characteristics of fine-grained soils using consistency limits. Arab J Sci Eng 41(4):1319–1328CrossRefGoogle Scholar
  20. Göngröft A, Eschenbach A (2015) Abschlussbericht - Analyse der Zusammensetzung und Qualität der organischen Substanz frischer Sedimente aus dem Hamburger Hafen. Unveröff. Abschlussbericht an HPAGoogle Scholar
  21. Gröngröft A, Tresselt K, Harms C, Miehlich G (2001) Design and effectiveness of a landfill cover system based on sludge as barrier material. In: Christensen TH, Cossu R, Stegmann R (eds) Proceedings Sardinia 2001, eighth international waste management and landfill symposium, Calgari: CISA. Vol. III, pp 317–324Google Scholar
  22. Gröngröft A, Gebert J, Berger K, Maaß B (2005) Verwendung von Baggergut als Material für die Dichtung von Deponien, den Deichbau, zur Verfüllung und zur Bodenverbesserung. Hamb Bodenkundl Arb 56:209–223Google Scholar
  23. Gröngröft A, Gebert J, Eschenbach A (2014) Water balance of dikes constructed with dredged material—results from a long-term field test. In: Saathoff F, Cantré S (eds) Proceedings of the South Baltic Conference on Dredged Materials in Dike Construction. Universität Rostock, Rostock, pp 61–66Google Scholar
  24. Große AK, Saathoff F (2014) Geotechnical characterization of different fine-grained, organic dredged material batches from the Baltic Sea area: peculiarities and adaptions. In: Saathoff F, Cantré S (eds) Proceedings of the South Baltic Conference on Dredged Materials in Dike Construction. Universität Rostock, Rostock, pp 17–30Google Scholar
  25. IGBE (1993) Bodenmechanische Untersuchung von Proben aus der Betriebsanlage METHA, 2. Überprüfung der Standardeinbaumethode. Institut für Grundbau, Bodenmechanik und Energiewasserbau, Universität HannoverGoogle Scholar
  26. Hamza MA, Anderson WK (2005) Soil compaction in cropping systems: a review of the nature, causes and possible solutions. Soil Till Res 82(2):121–145CrossRefGoogle Scholar
  27. Kropp J, Roithmeier O, Hattermann F, Rachimow C, Lüttger A, Wechsung F, Lasch P, Christiansen ES, Reyer C, Suckow F, Gutsch M, Holsten A, Kartschall T, Wodinski M, Hauf Y, Conradt T, Österle H, Walther C, Lissner T, Lux N, Tekken V, Ritchie S, Kossak J, Klaus M, Costa L, Vetter T, Klose M (2009) Klimawandel in Sachsen-Anhalt - Verletzlichkeiten gegenüber den Folgen des Klimawandels. Abschlussbericht des Potsdam-Instituts für Klimafolgenforschung (PIK)Google Scholar
  28. LAGA Ad-hoc-AG Deponietechnische Vollzugsfragen (2008) Eignungsbeurteilung von METHA-Material zur Herstellung von mineralischen Dichtungen in Oberflächenabdichtungssystemen von Deponien 16.06.2008Google Scholar
  29. Luther-Mosebach J, Kalinski K, Gröngröft A, Eschenbach A (2018) CO2 fluxes in subtropical dryland soils—a comparison of the gradient and the closed chamber method. J Plant Nutr Soil Sci 181(1):21–30CrossRefGoogle Scholar
  30. Mai S, Elsner A, Meyer V, Zimmermann C (2004) Änderung des Sturmflutrisikos der niedersächsischen Küste bei Klimawandel. Proceedings der Konferenz 'Klimaänderung und Küstenschutz' an der Universität Hamburg, S. 281–290, GKSS Forschungszentrum GeesthachtGoogle Scholar
  31. Müller H, Borchardt J (2014) Load bearing capacity of a selected dredged material—evaluation for its applicability on the East Zingst dike projekt. In: Saathoff F, Cantré S (eds) Proceedings of the South Baltic Conference on dredged materials in dike construction. Universität Rostock, Rostock, pp 111–118Google Scholar
  32. Netzband A, Reincke H, Bergemann M (2002) The River Elbe. J Soils Sediments 2(3):112–116CrossRefGoogle Scholar
  33. Oing K, Gröngröft A, Eschenbach A (2014) Gleichwertigkeit von Baggergut mit üblichen Bodenmaterialien im Deichbau: Schrumpfungsverhalten und Schadstofffreisetzungspotenzial von aufbereitetem Baggergut. In M. Henneberg (eds), Schriftenreihe Umweltingenieurwesen 47:105–109Google Scholar
  34. Paradelo R, Barral MT (2013) Influence of organic matter and texture on the compactibility of technosols. Catena 110:95–99CrossRefGoogle Scholar
  35. Pons LJ, Zonneveld IS (1965) Soil ripening and soil classification. Initial soil formationin alluvial deposits and a classification of the resulting soils. Int. Inst. Land Reclam. Improv. Publ. No. 13. H. Veenman and Zonen, WageningenGoogle Scholar
  36. Rijniersce K (1983) A simulation model for physical soil ripening in the Ijsselmeerpolders. In: Proceeding of Overdruk uit: polders of the world: papers international symposium, Lelistad, Netherlands, pp 407–417Google Scholar
  37. Saathoff F, Cantré S, Sikora Z (2015) South Baltic guideline for the application of dredged materials, coal combustion products and geosynthetics in dike construction. DredgDikes_Guideline _Annex_II_online. pdf iGoogle Scholar
  38. Smith CW, Johnston MA, Lorentz S (1997) Assessing the compaction susceptibility of South African forestry soils. II. Soil properties affecting compactibility and compressibility. Soil Till Res 43(3):335–354CrossRefGoogle Scholar
  39. Soane BD (1975) Studies on some soil physical properties in relation to cultivations and traffic. Technical Bulletin, Ministry of Agriculture, Fisheries and FoodGoogle Scholar
  40. Soane BD (1990) The role of organic matter in soil compactibility: a review of some practical aspects. Soil Till Res 16(1–2):179–201CrossRefGoogle Scholar
  41. von Storch H, Claussen M (eds) (2011) Klimabericht für die Metropolregion. Springer-Verlag, HamburgGoogle Scholar
  42. Sunil BM, Deepa AV (2016) Influence of drying temperature on three soils physical properties. Geotech Geol Eng 34:777–778. CrossRefGoogle Scholar
  43. Sunil BM, Krishnappa H (2012) Effect of drying on the index properties of lateritic soils. Geotech Geol Eng 30:869–979CrossRefGoogle Scholar
  44. Tresselt K, Miehlich G, Groengroeft A, Melchior S, Berger K, Harms C (1998) Harbour sludge as barrier material in landfill cover systems. Water Sci Technol 37(6–7):307–313CrossRefGoogle Scholar
  45. Vermeulen J, Grotenhuis T, Joziasse J, Rulkens W (2003) Ripening of clayey dredged sediments during temporary upland disposal a bioremediation technique. J Soils Sediments 3(1):49–59CrossRefGoogle Scholar
  46. Zhang H, Hartge KH (1992) Zur Auswirkung organischer Substanz verschiedener Humifizierungsgrade auf die Aggregatstabilität durch Reduzierung der Benetzbarkeit. Z Pflanzenernähr Bodenkd 155(2):143–149CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Katja Oing
    • 1
    Email author
  • Alexander Gröngröft
    • 1
  • Annette Eschenbach
    • 1
  1. 1.Institute of Soil ScienceUniversity of HamburgHamburgGermany

Personalised recommendations