The effect of application of organic manures and mineral fertilizers on the state of soil organic matter and nutrients in the long-term field experiment

Abstract

Purpose

Soil organic matter (SOM) plays an important role in terrestrial ecosystems and agroecosystems. Changes in the agricultural sector in the Czech Republic within the past 25 years have had a negative impact on SOM content and contribute to gradual soil degradation. The aim of this study is to estimate the effect of long-term application of different mineral fertilizers (NPK) and organic manures (manure, cattle slurry) on soil chemical properties (quality of humus, available nutrients, and soil reaction).

Materials and methods

Soil samples were collected from Luvisol during two selected periods 1994–2003 and 2014–2016 from long-term field experiment carried out in Prague-Ruzyně (Czech Republic). Average annual temperature is 8.5 °C, and annual precipitations are 485 mm. Different fertilization regimes have been applied for 62 years. The crop rotation was as follows: cereals (45%), root crops (33%) and legumes (22%). Soil analysis—soil organic carbon (SOC) was determined by oxidimetric titration method. Short fractionation method for evaluation of humic substance (HS), humic acid (HA) and fulvic acid (FA) content was used. Absorbance of HS in UV-VIS spectral range was measured by Varian Carry 50 Probe UV-VIS spectrometer. Degree of humification (DH) and color index (Q4/6) were calculated from fractional composition data. Soil reaction was measured by potentiometric method. Available nutrients (phosphorus, potassium, magnesium, calcium) were determined by Mehlich II and Mehlich I methods and by ICP-OES. For data analysis, the following are used: exploratory data analysis, ANOVA, and principal component analysis (PCA).

Results and discussion

PCA analysis differentiated fertilizers into two categories: (1) variant NPK (lower quality of humus)—higher acidity, lower SOC and HS content, predomination of FA, higher DH and lower content of available nutrients; (2) variants with organic manures (higher quality of humus)—lower acidity, higher SOC and HS content, predomination of HA, middle DH, and high content of available nutrients. The main result of presented study is to give a synthesis of effect of different type of fertilizers on a sustainable organic matter management in arable soils, with respect to yields, food security and adaptation to predict climate changes.

Conclusions

Long-term application of mineral fertilizers (NPK) without organic matter input can accelerate humus mineralization and soil quality degradation with all negative consequences such as (nitrogen leaching, higher availability of toxic element for plants, slow energy for soil microorganisms etc.). Application of organic fertilizers (manure and cattle slurry) helps to achieve the long-term stable yields while maintaining soil at optimum quality (long-term sustainable management with SOM). Principal component analysis is a useful tool for evaluation of soil quality changes.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Barak P, Jobe BO, Krueger AR, Peterson LA, Laird DA (1997) Effects of long-term soil acidification due to nitrogen fertilizer inputs in Wisconsin. Plant Soil 197(1):61–69. https://doi.org/10.1023/A:1004297607070

    Article  CAS  Google Scholar 

  2. Cai Z, Wang B, Xu M, Zhang H, Zhang L, Gao S (2014) Nitrification and acidification from urea application in red soil (Ferralic Cambisol) after different long-term fertilization treatments. J Soils Sediments 14(9):1526–1536. https://doi.org/10.1007/s11368-014-0906-4

    Article  CAS  Google Scholar 

  3. Chen Y, Senesi N, Schnitzer M (1977) Information provided on humic substances by E4/E6 ratios 1. Soil Sci Soc Am J 41:352–358

    Article  CAS  Google Scholar 

  4. Chen Y, Zhang X, He H et al (2010) Carbon and nitrogen pools in different aggregates of a Chinese mollisol as influenced by long-term fertilization. J Soils Sediments 10:1018–1026

    Article  CAS  Google Scholar 

  5. CZSO (2017) Statistical yearbook of the Czech Republic—2016. Czech Statistical Office, Praha

    Google Scholar 

  6. EC (2008) Review of existing information on the interrelations between soil and climate change (CLIMSOIL)—final report. Contract number 70307/2007/486157/SER/ B1:208. (ed. Schils RE), European Commission, Brussels

  7. EC (2012) (COM (2012) 46 final) Report from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions, the implementation of the soil thematic strategy and on going activities. Official Journal

  8. EUROSTAT (2017) Agri-environmental indicator—soil erosion. http://ec.europa.eu/eurostat/statistics-explained/index.php/Agri-environmental_indicator_-_soil_erosion

  9. Galantini J, Rosell R (2006) Long-term fertilization effects on soil organic matter quality and dynamics under different production systems in semiarid Pampean soils. Soil Till Res 87(1):72–79. https://doi.org/10.1016/j.still.2005.02.032

    Article  Google Scholar 

  10. Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW, Seitzinger SP, Asner GP, Cleveland CC, Green PA, Holland EA, Karl DM, Michaels AF, Porter JH, Townsend AR, Vöosmarty CJ (2004) Nitrogen cycles: past, present, and future. Biogeochemistry 70(2):153–226. https://doi.org/10.1007/s10533-004-0370-0

    Article  CAS  Google Scholar 

  11. Hábová M, Pospíšilová L, Novotná J, Badalíková B, Jurica L (2016) Haplic Chernozem properties as affected by different tillage systems. Acta Univ Agric Silvic Mendelianae Brun 64(1):63–69. https://doi.org/10.11118/actaun201664010063

    Article  CAS  Google Scholar 

  12. Hlisnikovský L, Kunzová E, Menšík L (2016) Winter wheat: results of long-term fertilizer experiment& amp; nbsp; in Prague-Ruzyně over the last 60 years. Plant Soil Environ 62(3):105–113. https://doi.org/10.17221/746/2015-PSE

    Article  CAS  Google Scholar 

  13. IUSS Working Group WRB (2015) World Reference Base for soil resources 2014, update 2015 international soil classification system for naming soils and creating legends for soil maps. World soil resources reports no. 106. FAO, Rome

    Google Scholar 

  14. Jones RJA, Hiederer R, Rusco E, Montanarella L (2005) Estimating organic carbon in the soils of Europe for policy support. Eur J Soil Sci 56(5):655–671. https://doi.org/10.1111/j.1365-2389.2005.00728.x

    Article  CAS  Google Scholar 

  15. Kirk PL (1950) Kjeldahl method for total nitrogen. Anal Chem 22(2):354–358. https://doi.org/10.1021/ac60038a038

    Article  CAS  Google Scholar 

  16. Kjeldahl J (1883) Neue Methode zur Bestimmung des Stickstoffs in organischen Körpern. Zeitschrift für Anal Chemie 22(1):366–383. https://doi.org/10.1007/BF01338151

    Article  Google Scholar 

  17. Kononova MM (1963) Organičeskoje veščestvo počvy: jego priroda, svojstva i metody izucenija. AN SSSR, Moskva

    Google Scholar 

  18. Kubát J, Lipavský J (2006) Steady state of the soil organic matter in the long-term field experiments. Plant Soil Environ 52:9–14

    Google Scholar 

  19. Kubát J, Lipavský J (2010) Evaluation of organic matter content in arable soils in the Czech Republic. In: Behl RK, Merbach W, Meliczek H, Kaetsh C (eds) Crop science and land use for foof and bioenergy. Agrobios (International), Jodhpur, pp 245–251

    Google Scholar 

  20. Lal R (2006) Enhancing crop yields in the developing countries through restoration of the soil organic carbon pool in agricultural lands. L Degrad Dev 17(2):197–209. https://doi.org/10.1002/ldr.696

    Article  Google Scholar 

  21. Liu E, Yan C, Mei X et al (2013) Long-term effect of manure and fertilizer on soil organic carbon pools in dryland farming in Northwest China. PLoS One. https://doi.org/10.1371/journal.pone.0056536

  22. Lugato E, Panagos P, Bampa F et al (2014) A new baseline of organic carbon stock in European agricultural soils using a modelling approach. Glob Chang Biol 20:313–326. https://doi.org/10.1111/gcb.12292

    Article  Google Scholar 

  23. Matějková S, Kumhálová J, Lipavský J (2010) Evaluation of crop yield under different nitrogen doses of mineral fertilization. Plant Soil Environ 56:163–167

    Article  Google Scholar 

  24. Mehlich A (1984) Mehlich 3 soil test extractant: a modification of Mehlich 2 extractant. Commun Soil Sci Plant Anal 15(12):1409–1416. https://doi.org/10.1080/00103628409367568

    Article  CAS  Google Scholar 

  25. Meloun M, Militký J (2011) Statistical data analysis, a practical guide with 1250 exercises and answer key on CD. Woodhead Publishing India, New Delhi

    Google Scholar 

  26. Nelson DW, Sommers LE (1996) Total carbon, organic carbon, and organic matter. In: Sparks DL et al (eds) Methods of soil analysis, Part, vol 3, pp 961–1010

    Google Scholar 

  27. Němeček J, Mühlhanselová M, Macků J, et al (2011) Taxonomický klasifikační systém půd, 2. upraven. ČZU v Praze, Praha

  28. Orlov DS, Biryukova ON, Rozanova MS (2004) Revised system of the humus status parameters of soils and their genetic horizons. Eurasian Soil Sci 37:798–805

    Google Scholar 

  29. Piccolo A, Celano G, Conte P (2002) Methods of isolation and characterization of humic substances to study their interactions with pesticides. In: Cornejo J, Jamet P (eds) Proceedings of conference pesticide/soil interactions. INRA, Paris, pp 103–116

    Google Scholar 

  30. Plaza-Bonilla D, Arrúe JL, Cantero-Martínez C, Fanlo R, Iglesias A, Álvaro-Fuentes J (2015) Carbon management in dryland agricultural systems. A review. Agron Sustain Dev 35(4):1319–1334. https://doi.org/10.1007/s13593-015-0326-x

    Article  Google Scholar 

  31. Pospíšilová L, Žigová A, Šťastný M, Liptaj T (2012) Humic acids quality of cambisols developed on gneiss and amphibolite. Acta Geodyn Geomater 9:503–510

    Google Scholar 

  32. Pospíšilová L, Vlček V, Hybler V et al (2016) Standard analytical methods and evaluation criteria of soil physical, agrochemical, biological and hygienic parameters. Mendel Universiti in Brno: Folia Universitatis Agriculturae at Silviculturae Mendelianae Brunensis, Brno

  33. Ren T, Wang J, Chen Q et al (2014) The effects of manure and nitrogen fertilizer applications on soil organic carbon and nitrogen in a high-input cropping system. PLoS One. https://doi.org/10.1371/journal.pone.0097732

  34. Senesi N, Plaza C, Brunetti G, Polo A (2007) A comparative survey of recent results on humic-like fractions in organic amendments and effects on native soil humic substances. Soil Biol Biochem 39(6):1244–1262. https://doi.org/10.1016/j.soilbio.2006.12.002

    Article  CAS  Google Scholar 

  35. Sims JR, Haby VA (1971) Simplified colorimetric determination of soil organic matter. Soil Sci 112(2):137–141. https://doi.org/10.1097/00010694-197108000-00007

    Article  CAS  Google Scholar 

  36. Song X, Liu S, Liu Q et al (2014) Carbon sequestration in soil humic substances under long-term fertilization in a wheat-maize system from North China. J Integr Agric 13:562–569

    Article  CAS  Google Scholar 

  37. Šrek P, Hejcman N, Kunzová E (2010) Multivariate analysis of relationship between potato (Solanum Tuberosum L.) yield, amount of applied elements, their concentrations in tubers and uptake in a long-term fertilizer experiment. F. Crop Res 118:183–193

    Article  Google Scholar 

  38. Sun Y, Huang S, Yu X, Zhang W (2013) Stability and saturation of soil organic carbon in rice fields: evidence from a long-term fertilization experiment in subtropical China. J Soils Sediments 13(8):1327–1334. https://doi.org/10.1007/s11368-013-0741-z

    Article  CAS  Google Scholar 

  39. Swift RS (1999) Macromolecular properties of soil humic substances: fact, fiction, and opinion. Soil Sci 164:858–871

    Article  Google Scholar 

  40. Swift RS (2001) Sequestration of carbon by soil. Soil Sci 166(11):858–871. https://doi.org/10.1097/00010694-200111000-00010

    Article  CAS  Google Scholar 

  41. Verma G, Sharma RP, Sharma SP et al (2012) Changes in soil fertility status of maize-wheat system due to long-term use of chemical fertilizers and amendments in an alfisol. Plant Soil Environ 58:529–533

    Article  CAS  Google Scholar 

  42. Wang HY, Zhou JM, Chen XQ, Du CW (2003) Interaction of NPK fertilizers during their transformation in soils: III. Transformations of monocalcium phosphate. Pedosphere 14:379–385

    Google Scholar 

  43. Wang C, He N, Zhang J et al (2015) Long-term grazing exclusion improves the composition and stability of soil organic matter in inner Mongolian grasslands. PLoS One 10:1–12. https://doi.org/10.1371/journal.pone.0128837

    CAS  Article  Google Scholar 

  44. Włodarczyk T (2011) Greenhouse gases sink in soils. In: Gliński J, Horabik J, Lipiec J (eds) Encyclopedia of agrophysics. Springer, Dordrecht, pp 351–354. https://doi.org/10.1007/978-90-481-3585-1_65

    Google Scholar 

  45. Yang X, Zhang X, Fang H et al (2003) Long- term effects of fertilization on soil organic carbon changes in continuous corn of northeast china: Roth C model simulations. Environ Manag 32:459–465

    Article  CAS  Google Scholar 

  46. Yang R, Su YZ, Wang T, Yang Q (2016) Effect of chemical and organic fertilization on soil carbon and nitrogen accumulation in a newly cultivated farmland. J Integr Agric 15(3):658–666. https://doi.org/10.1016/S2095-3119(15)61107-8

    Article  CAS  Google Scholar 

  47. Zhang W, Xu M, Wang X, Huang Q, Nie J, Li Z, Li S, Hwang SW, Lee KB (2012) Effects of organic amendments on soil carbon sequestration in paddy fields of subtropical China. J Soils Sediments 12(4):457–470. https://doi.org/10.1007/s11368-011-0467-8

    Article  CAS  Google Scholar 

  48. Zhang L, Chen W, Burger M et al (2015) Changes in soil carbon and enzyme activity as a result of different long-term fertilization regimes in a greenhouse field. PLoS One 10:1–13. https://doi.org/10.1371/journal.pone.0118371

    CAS  Article  Google Scholar 

  49. Zhao X, Hu K, Stahr K (2013) Simulation of SOC content and storage under different irrigation, fertilization and tillage conditions using EPIC model in the North China plain. Soil Tillage Res 130:128–135. https://doi.org/10.1016/j.still.2013.02.005

    Article  Google Scholar 

Download references

Acknowledgements

This paper is supported by the Ministry of Agriculture of the Czech Republic project ČR-RO0417, by H2020-SFS-2015-2 no. 677407 “SOILCARE” and by Czech Agricultural Agency NAZV QK1810233.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ladislav Menšík.

Additional information

Responsible editor: Elżbieta Jamroz

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Menšík, L., Hlisnikovský, L., Pospíšilová, L. et al. The effect of application of organic manures and mineral fertilizers on the state of soil organic matter and nutrients in the long-term field experiment. J Soils Sediments 18, 2813–2822 (2018). https://doi.org/10.1007/s11368-018-1933-3

Download citation

Keywords

  • Humus fractionation
  • Long-term field experiment
  • Mineral fertilizers
  • Nutrients
  • Organic manures
  • PCA
  • Soil reaction