Review of remediation technologies for sediments contaminated by heavy metals

Abstract

Purpose

Contamination of sediments with heavy metals (HMs) is a worldwide environmental issue, due to the negative ecological effects of HMs. Sediments are an important component of aquatic ecosystems, impacting the transformation and transfer of HMs in the environment. Thus, remediating sediments polluted by HMs is a crucial activity within the full aquatic ecosystem remediation process, and economical, effective, and environmentally friendly remediation techniques are urgently needed.

Materials and methods

We reviewed the existing literature on sediment remediation techniques and developments in the fields of environmental science and engineering, attempting to provide a better understanding of the advances of remediation techniques and new research directions for sediments contaminated by HMs.

Results and discussion

This review summarized remediation methods (e.g., physical–chemical strategies, biological strategies, and combined techniques) used to treat sediments contaminated with HMs. This included analyzing the mechanisms associated with biological remediation technologies and their combination with other methods. Then, the review summarized the factors influencing the selection of remediation methods and evaluated the prospects of new emerging remediation methods.

Conclusions

Bioimmobilization techniques (e.g., phytostabilization and microorganism immobilization) have received increased attention because of their low remediation cost and environmental compatibility. Furthermore, particular attention has been paid to explore the role of sulfate-reducing bacteria in decreasing heavy metal mobility. The review provides a useful theoretical foundation and technology reference for the remediation of sediment polluted by HMs.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Ahemad M (2014) Remediation of metalliferous soils through the heavy metal resistant plant growth promoting bacteria: paradigms and prospects. Arab J Chem. https://doi.org/10.1016/j.arabjc.2014.11.020

  2. Akcil A, Erust C, Ozdemiroglu S, Fonti V, Beolchini F (2015) A review of approaches and techniques used in aquatic contaminated sediments: metal removal and stabilization by chemical and biotechnological processes. J Clean Prod 86:24–36. https://doi.org/10.1016/j.jclepro.2014.08.009

    CAS  Article  Google Scholar 

  3. Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals—concepts and applications. Chemosphere 91(7):869–881. https://doi.org/10.1016/j.chemosphere.2013.01.075

    CAS  Article  Google Scholar 

  4. Beesley L, Inneh OS, Norton GJ, Moreno-Jimenez E, Pardo T, Clemente R, Dawson JJ (2014) Assessing the influence of compost and biochar amendments on the mobility and toxicity of metals and arsenic in a naturally contaminated mine soil. Environ Pollut 186:195–202. https://doi.org/10.1016/j.envpol.2013.11.026

    CAS  Article  Google Scholar 

  5. Beolchini F, Fonti V, Rocchetti L, Saraceni G, Pietrangeli B, Dell’Anno A (2013) Chemical and biological strategies for the mobilisation of metals/semi-metals in contaminated dredged sediments: experimental analysis and environmental impact assessment. Chem Ecol 29(5):415–426. https://doi.org/10.1080/02757540.2013.776547

    CAS  Article  Google Scholar 

  6. Bert V, Seuntjens P, Dejonghe W, Lacherez S, Thuy HT, Vandecasteele B (2009) Phytoremediation as a management option for contaminated sediments in tidal marshes, flood control areas and dredged sediment landfill sites. Environ Sci Pollut Res 16(7):745–764. https://doi.org/10.1007/s11356-009-0205-6

    CAS  Article  Google Scholar 

  7. Bohuslavek J, Payne JW, Liu Y, Jr BH, Xun L (2001) Cloning, sequencing, and characterization of a gene cluster involved in EDTA degradation from the bacterium BNC1. Appl Environ Microb 67(2):688–695. https://doi.org/10.1128/AEM.67.2.688-695.2001

    CAS  Article  Google Scholar 

  8. Bruins MR, Kapil S, Oehme FW (2000) Microbial resistance to metals in the environment. Ecotoxicol Environ Saf 45(3):198–207. https://doi.org/10.1006/eesa.1999.1860

    CAS  Article  Google Scholar 

  9. Burton GA (2010) Metal bioavailability and toxicity in sediments. Crit Rev Environ Sci Technol 40(9-10):852–907. https://doi.org/10.1080/10643380802501567

    CAS  Article  Google Scholar 

  10. Chai LY, Min XB, Ning T, Wang YY (2009) Mechanism and kinetics of Zn(II) removal from wastewater by immobilised beads of SRB sludge. Int J Environ Pollut 37(1):20–33. https://doi.org/10.1504/IJEP.2009.024468

    CAS  Article  Google Scholar 

  11. Chen SY, Lin JG (2004) Bioleaching of heavy metals from contaminated sediment by indigenous sulfur-oxidizing bacteria in an air-lift bioreactor: effects of sulfur concentration. Water Res 38(14-15):3205–3214. https://doi.org/10.1016/j.watres.2004.04.050

    CAS  Article  Google Scholar 

  12. Chen BD, Li XL, Tao HQ, Christie P, Wong MH (2003) The role of arbuscular mycorrhiza in zinc uptake by red clover growing in a calcareous soil spiked with various quantities of zinc. Chemosphere 50(6):839–846. https://doi.org/10.1016/S0045-6535(02)00228-X

    CAS  Article  Google Scholar 

  13. Chen WF, Wang W, Zhang X, Zhang J (2016a) Stabilization of heavy metals in contaminated river sediment by nanozero-valent iron/activated carbon composite. J Environ Eng 142(12):04016068. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001147

    Article  CAS  Google Scholar 

  14. Chen WF, Zhang J, Zhang X, Wang W, Li Y (2016b) Investigation of heavy metal (Cu, Pb, Cd, and Cr) stabilization in river sediment by nano-zero-valent iron/activated carbon composite. Environ Sci Pollut Res 23(2):1460–1470. https://doi.org/10.1007/s11356-015-5387-5

    CAS  Article  Google Scholar 

  15. Chiang YW, Santos RM, Ghyselbrecht K, Cappuyns V, Martens JA, Swennen R, Van Gerven T, Meesschaert B (2012) Strategic selection of an optimal sorbent mixture for in-situ remediation of heavy metal contaminated sediments: framework and case study. J Environ Manag 105:1–11. https://doi.org/10.1016/j.jenvman.2012.03.037

    CAS  Article  Google Scholar 

  16. Choudhury MR, Islam MS, Ahmed ZU, Nayar F (2016) Phytoremediation of heavy metal contaminated buriganga riverbed sediment by Indian mustard and marigold plants. Environ Prog Sustain 35(1):117–124. https://doi.org/10.1002/ep.12213

    CAS  Article  Google Scholar 

  17. Clemente R, Walker DJ, Bernal MP (2005) Uptake of heavy metals and As by Brassica juncea grown in a contaminated soil in Aznalcollar (Spain) the effect of soil amendments. Environ Pollut 138(1):46–58. https://doi.org/10.1016/j.envpol.2005.02.019

    CAS  Article  Google Scholar 

  18. Couvidat J, Benzaazoua M, Chatain V, Bouzahzah H (2016) Environmental evaluation of dredged sediment submitted to a solidification stabilization process using hydraulic binders. Environ Sci Pollut Res 23(17):17142–17157. https://doi.org/10.1007/s11356-016-6869-9

    CAS  Article  Google Scholar 

  19. Dixit R, Wasiullah EY, Malaviya D, Pandiyan K, Singh U, Sahu A, Shukla R, Singh B, Rai J, Sharma P, Lade H, Paul D (2015) Bioremediation of heavy metals from soil and aquatic environment: an overview of principles and criteria of fundamental processes. Sustainability 7(2):2189–2212. https://doi.org/10.3390/su7022189

    CAS  Article  Google Scholar 

  20. Doni S, Macci C, Peruzzi E, Iannelli R, Masciandaro G (2015) Heavy metal distribution in a sediment phytoremediation system at pilot scale. Ecol Eng 81:146–157. https://doi.org/10.1016/j.ecoleng.2015.04.049

    Article  Google Scholar 

  21. Fajardo C, Ortiz LT, Rodriguez-Membibre ML, Nande M, Lobo MC, Martin M (2012) Assessing the impact of zero-valent iron (ZVI) nanotechnology on soil microbial structure and functionality: a molecular approach. Chemosphere 86(8):802–808. https://doi.org/10.1016/j.chemosphere.2011.11.041

    CAS  Article  Google Scholar 

  22. Fan YC, Wang M, Tan LL, Wu QG, Ge YQ, Zhou WN, Zhang X (2016) Heavy metal-contaminated sediments in China: a review of current situation and solidification remediation. Anhui Agric Sci Bull 22:97–101 (in Chinese)

    Google Scholar 

  23. Fang W, Delapp RC, Kosson DS, van der Sloot HA, Liu J (2017) Release of heavy metals during long-term land application of sewage sludge compost: percolation leaching tests with repeated additions of compost. Chemosphere 169:271–280. https://doi.org/10.1016/j.chemosphere.2016.11.086

    CAS  Article  Google Scholar 

  24. Farwell AJ, Vesely S, Nero V, Rodriguez H, McCormack K, Shah S, Dixon DG, Glick BR (2007) Tolerance of transgenic canola plants (Brassica napus) amended with plant growth-promoting bacteria to flooding stress at a metal-contaminated field site. Environ Pollut 147(3):540–545. https://doi.org/10.1016/j.envpol.2006.10.014

    CAS  Article  Google Scholar 

  25. Fatoki OS, Mathabatha S (2001) An assessment of heavy metal pollution in the East London and Port Elizabeth harbours. Water SA 27:233–240

    CAS  Article  Google Scholar 

  26. Fls DA, Navoni JA, do Amaral VS (2017) The use of bacterial bioremediation of metals in aquatic environments in the twenty-first century: a systematic review. Environ Sci Pollut Res 24:16545–16559

    Article  Google Scholar 

  27. Fonti V, Dell'Anno A, Beolchini F (2013) Influence of biogeochemical interactions on metal bioleaching performance in contaminated marine sediment. Water Res 47(14):5139–5152. https://doi.org/10.1016/j.watres.2013.05.052

    CAS  Article  Google Scholar 

  28. Fonti V, Beolchini F, Rocchetti L, Dell’Anno A (2015a) Bioremediation of contaminated marine sediments can enhance metal mobility due to changes of bacterial diversity. Water Res 68:637–650. https://doi.org/10.1016/j.watres.2014.10.035

    CAS  Article  Google Scholar 

  29. Fonti V, Dell’Anno A, Beolchini F (2015b) Biogeochemical interactions in the application of biotechnological strategies to marine sediments contaminated with metals. Nova Biotechnol Chim 14:12–31

    CAS  Google Scholar 

  30. Galanopoulou S, Vgenopoulos A, Conispoliatis N (2009) Anthropogenic heavy metal pollution in the surficial sediments of the Keratsini Harbor, Saronikos Gulf, Greece. Water Air Soil Pollut 202(1-4):121–130. https://doi.org/10.1007/s11270-008-9962-y

    CAS  Article  Google Scholar 

  31. Gan M, Jie S, Li M, Zhu J, Liu X (2015) Bioleaching of multiple metals from contaminated sediment by moderate thermophiles. Mar Pollut Bull 97(1-2):47–55. https://doi.org/10.1016/j.marpolbul.2015.06.040

    CAS  Article  Google Scholar 

  32. Gan M, Song Z, Zhu J, Liu X (2016) Efficient bioleaching of heavy metals from contaminated sediment in batch method coupled with the assistance of heterotrophic microorganisms. Environ Earth Sci 75(6):457. https://doi.org/10.1007/s12665-016-5307-0

    Article  CAS  Google Scholar 

  33. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China (GAQSIQ) (2002) Marine sediment quality (GB 18668–2002)

  34. Gorby YA, Frank Caccavo J, Harvey Bolton J (1998) Microbial reduction of cobaltIIIEDTA- in the presence and absence of manganese (IV) oxide. Environ Sci Technol 32(2):244–250. https://doi.org/10.1021/es970516r

    CAS  Article  Google Scholar 

  35. Groudev S, Georgiev P, Spasova I, Nicolova M (2014) Decreasing the contamination and toxicity of a heavily contaminated soil by in situ bioremediation. J Geochem Explor 144:374–379. https://doi.org/10.1016/j.gexplo.2014.01.017

    CAS  Article  Google Scholar 

  36. Hazarika J, Ghosh U, Kalamdhad AS, Khwairakpam M, Singh J (2017) Transformation of elemental toxic metals into immobile fractions in paper mill sludge through rotary drum composting. Ecol Eng 101:185–192. https://doi.org/10.1016/j.ecoleng.2017.02.005

    Article  Google Scholar 

  37. Heyden BPVD, Roychoudhury AN (2015) Application, chemical interaction and fate of iron minerals in polluted sediment and soils. Curr Pollut Rep 1(4):265–279. https://doi.org/10.1007/s40726-015-0020-2

    Article  CAS  Google Scholar 

  38. Horowitz AJ (1991) A primer on sediment-trace element chemistry, 2nd edn. Lewis Publishers, Michigan

    Google Scholar 

  39. Hou SJ, Li T, Lin G, Wu SL, Chen BD (2016) The influences of biogas residue and arbuscular mycorrhizal fungi on growth and mineral nutrition of Glycyrrhiza uralensis. Acta Sci Circumst 36:4453–4460 (in Chinese)

    CAS  Google Scholar 

  40. Hsu HF, Jhuo YS, Kumar M, Ma YS, Lin JG (2010) Simultaneous sulfate reduction and copper removal by a PVA-immobilized sulfate reducing bacterial culture. Bioresour Technol 101(12):4354–4361. https://doi.org/10.1016/j.biortech.2010.01.094

    CAS  Article  Google Scholar 

  41. Huang D, Liu L, Zeng G, Xu P, Huang C, Deng L, Wang R, Wan J (2017) The effects of rice straw biochar on indigenous microbial community and enzymes activity in heavy metal-contaminated sediment. Chemosphere 174:545–553. https://doi.org/10.1016/j.chemosphere.2017.01.130

    CAS  Article  Google Scholar 

  42. John SG, Ruggiero CE, Hersman LE, Tung C, Neu MP (2001) Siderophore mediated plutonium accumulation by Microbacterium flavescens (JG-9). Environ Sci Technol 35(14):2942–2948. https://doi.org/10.1021/es010590g

    CAS  Article  Google Scholar 

  43. Jośko I, Oleszczuk P, Pranagal J, Lehmann J, Xing B, Cornelissen G (2013) Effect of biochars, activated carbon and multiwalled carbon nanotubes on phytotoxicity of sediment contaminated by inorganic and organic pollutants. Ecol Eng 60:50–59. https://doi.org/10.1016/j.ecoleng.2013.07.064

    Article  Google Scholar 

  44. Karri S, Sierra-Alvarez R, Field JA (2005) Zero valent iron as an electron-donor for methanogenesis and sulfate reduction in anaerobic sludge. Biotechnol Bioeng 92(7):810–819. https://doi.org/10.1002/bit.20623

    CAS  Article  Google Scholar 

  45. Kaya A, Yukselen Y (2005) Zeta potential of soils with surfactants and its relevance to electrokinetic remediation. J Hazard Mater 120(1-3):119–126. https://doi.org/10.1016/j.jhazmat.2004.12.023

    CAS  Article  Google Scholar 

  46. Kotrba P, Najmanova J, Macek T, Ruml T, Mackova M (2009) Genetically modified plants in phytoremediation of heavy metal and metalloid soil and sediment pollution. Biotechnol Adv 27(6):799–810. https://doi.org/10.1016/j.biotechadv.2009.06.003

    CAS  Article  Google Scholar 

  47. Kumar N, Omoregie EO, Rose J, Masion A, Lloyd JR, Diels L, Bastiaens L (2014) Inhibition of sulfate reducing bacteria in aquifer sediment by iron nanoparticles. Water Res 51:64–72. https://doi.org/10.1016/j.watres.2013.09.042

    CAS  Article  Google Scholar 

  48. Kumar N, Chaurand P, Rose J, Diels L, Bastiaens L (2015) Synergistic effects of sulfate reducing bacteria and zero valent iron on zinc removal and stability in aquifer sediment. Chem Eng J 260:83–89. https://doi.org/10.1016/j.cej.2014.08.091

    CAS  Article  Google Scholar 

  49. Kumpiene J, Lagerkvist A, Maurice C (2008) Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments—a review. Waste Manag 28(1):215–225. https://doi.org/10.1016/j.wasman.2006.12.012

    CAS  Article  Google Scholar 

  50. Li YN (2011) Contamination and bioremediation of heavy metal-organic complex in urban sewage river sediment. Ph.D. thesis, Tianjin University, Tianjin, China (in Chinese)

  51. Li X, Wu Y, Zhang C, Liu Y, Zeng G, Tang X, Dai L, Lan S (2016) Immobilizing of heavy metals in sediments contaminated by nonferrous metals smelting plant sewage with sulfate reducing bacteria and micro zero valent iron. Chem Eng J 306:393–400. https://doi.org/10.1016/j.cej.2016.07.079

    CAS  Article  Google Scholar 

  52. Li X, Dai L, Zhang C, Zeng G, Liu Y, Zhou C, Xu W, Wu Y, Tang X, Liu W, Lan S (2017) Enhanced biological stabilization of heavy metals in sediment using immobilized sulfate reducing bacteria beads with inner cohesive nutrient. J Hazard Mater 324(Pt B):340–347. https://doi.org/10.1016/j.jhazmat.2016.10.067

    CAS  Article  Google Scholar 

  53. Liu XL (2015) Micro-phyto combined remediation on heavy metal polluted channel dredged sediment. MSc thesis, Tianjin University of Science and Technology, Tianjin, China (in Chinese)

  54. Liu W (2016) Effect of sodium dodecyl sulphate on bioleaching of Cd, Cu and Zn from Xiangjiang sediment by Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans. MSc thesis, Hunan University, Changsha, China (in Chinese)

  55. MacDonald DD, Ingersoll CG, Berger TA (2000) Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Arch Environ Con Tox 39(1):20–31. https://doi.org/10.1007/s002440010075

    CAS  Article  Google Scholar 

  56. Macía P, Fernández-Costas C, Rodríguez E, Sieiro P, Pazos M, Sanromán MA (2014) Technosols as a novel valorization strategy for an ecological management of dredged marine sediments. Ecol Eng 67:182–189. https://doi.org/10.1016/j.ecoleng.2014.03.020

    Article  Google Scholar 

  57. Mamouni RE, Jacquet R, Gerin P, Agathos SN (2002) Influence of electron donors and acceptors on the bioremediation of soil contaminated with trichloroethene and nickel: laboratory- and pilot-scale study. Water Sci Technol 45(10):49–54

    Google Scholar 

  58. Mani D, Kumar C (2014) Biotechnological advances in bioremediation of heavy metals contaminated ecosystems: an overview with special reference to phytoremediation. Int J Environ Sci Technol 11(3):843–872. https://doi.org/10.1007/s13762-013-0299-8

    CAS  Article  Google Scholar 

  59. Mattei P, Cincinelli A, Martellini T, Natalini R, Pascale E, Renella G (2016) Reclamation of river dredged sediments polluted by PAHs by co-composting with green waste. Sci Total Environ 566-567:567–574. https://doi.org/10.1016/j.scitotenv.2016.05.140

    CAS  Article  Google Scholar 

  60. Meers E, Ruttens A, Hopgood M, Lesage E, Tack FM (2005a) Potential of Brassic rapa, Cannabis sativa, Helianthus annuus and Zea mays for phytoextraction of heavy metals from calcareous dredged sediment derived soils. Chemosphere 61(4):561–572. https://doi.org/10.1016/j.chemosphere.2005.02.026

    CAS  Article  Google Scholar 

  61. Meers E, Ruttens A, Hopgood MJ, Samson D, Tack FM (2005b) Comparison of EDTA and EDDS as potential soil amendments for enhanced phytoextraction of heavy metals. Chemosphere 58(8):1011–1022. https://doi.org/10.1016/j.chemosphere.2004.09.047

    CAS  Article  Google Scholar 

  62. Meers E, Vandecasteele B, Ruttens A, Vangronsveld J, Tack FMG (2007) Potential of five willow species (Salix spp.) for phytoextraction of heavy metals. Environ Exp Bot 60(1):57–68. https://doi.org/10.1016/j.envexpbot.2006.06.008

    CAS  Article  Google Scholar 

  63. Merlos MA, Zitka O, Vojtech A, Azcon-Aguilar C, Ferrol N (2016) The arbuscular mycorrhizal fungus Rhizophagus irregularis differentially regulates the copper response of two maize cultivars differing in copper tolerance. Plant Sci 253:68–76. https://doi.org/10.1016/j.plantsci.2016.09.010

    CAS  Article  Google Scholar 

  64. Min X, Chai L, Zhang C, Takasaki Y, Okura T (2008) Control of metal toxicity, effluent COD and regeneration of gel beads by immobilized sulfate-reducing bacteria. Chemosphere 72(7):1086–1091. https://doi.org/10.1016/j.chemosphere.2008.04.001

    CAS  Article  Google Scholar 

  65. Mohan RK, Brown MP, Barnes CR (2000) Design criteria and theoretical basis for capping contaminated marine sediments. Appl Ocean Res 22(2):85–93. https://doi.org/10.1016/S0141-1187(00)00003-1

    Article  Google Scholar 

  66. Mulligan CN, Yong RN, Gibbs BF (2001) An evaluation of technologies for the heavy metal remediation of dredged sediments. J Hazard Mater 85(1-2):145–163. https://doi.org/10.1016/S0304-3894(01)00226-6

    CAS  Article  Google Scholar 

  67. Muyzer G, Stams AJ (2008) The ecology and biotechnology of sulphate-reducing bacteria. Nat Rev Microbiol 6(6):441–454. https://doi.org/10.1038/nrmicro1892

    CAS  Google Scholar 

  68. Nguyen VK, Lee JU (2015) Effect of sulfur concentration on microbial removal of arsenic and heavy metals from mine tailings using mixed culture of Acidithiobacillus spp. J Geochem Explor 148:241–248. https://doi.org/10.1016/j.gexplo.2014.10.008

    CAS  Article  Google Scholar 

  69. Nies DH (1999) Microbial heavy-metal resistance. Appl Microbiol Biot 51(6):730–750. https://doi.org/10.1007/s002530051457

    CAS  Article  Google Scholar 

  70. Niu B, Hong S, Yuan J, Peng S, Wang Z, Zhang X (2013) Global trends in sediment-related research in earth science during 1992–2011: a bibliometric analysis. Scientometrics 98:511–529

    Article  Google Scholar 

  71. Nystroem GM, Pedersen AJ, Ottosen LM, Villumsen A (2006) The use of desorbing agents in electrodialytic remediation of harbour sediment. Sci Total Environ 357(1-3):25–37. https://doi.org/10.1016/j.scitotenv.2005.04.040

    CAS  Article  Google Scholar 

  72. Oliveira DMD, Sobral LGS, Olson GJ, Olson SB (2014) Acid leaching of a copper ore by sulphur-oxidizing microorganisms. Hydrometallurgy 147-148:223–227. https://doi.org/10.1016/j.hydromet.2014.05.019

    Article  CAS  Google Scholar 

  73. Pan K, Wang WX (2012) Trace metal contamination in estuarine and coastal environments in China. Sci Total Environ 421-422:3–16. https://doi.org/10.1016/j.scitotenv.2011.03.013

    CAS  Article  Google Scholar 

  74. Park JH, Lamb D, Paneerselvam P, Choppala G, Bolan N, Chung JW (2011) Role of organic amendments on enhanced bioremediation of heavy metal (loid) contaminated soils. J Hazard Mater 185(2-3):549–574. https://doi.org/10.1016/j.jhazmat.2010.09.082

    CAS  Article  Google Scholar 

  75. Park J, Han Y, Lee E, Choi U, Yoo K, Song Y, Kim H (2014) Bioleaching of highly concentrated arsenic mine tailings by Acidithiobacillus ferrooxidans. Sep Purif Technol 133:291–296. https://doi.org/10.1016/j.seppur.2014.06.054

    CAS  Article  Google Scholar 

  76. Pawlett M, Ritz K, Dorey RA, Rocks S, Ramsden J, Harris JA (2013) The impact of zero-valent iron nanoparticles upon soil microbial communities is context dependent. Environ Sci Pollut Res 20(2):1041–1049. https://doi.org/10.1007/s11356-012-1196-2

    CAS  Article  Google Scholar 

  77. Pedersen KB, Kirkelund GM, Ottosen LM, Jensen PE, Lejon T (2015) Multivariate methods for evaluating the efficiency of electrodialytic removal of heavy metals from polluted harbour sediments. J Hazard Mater 283:712–720. https://doi.org/10.1016/j.jhazmat.2014.10.016

    CAS  Article  Google Scholar 

  78. Peng JF, Song YH, Yuan P, Cui XY, Qiu GL (2009) The remediation of heavy metals contaminated sediment. J Hazard Mater 161(2-3):633–640. https://doi.org/10.1016/j.jhazmat.2008.04.061

    CAS  Article  Google Scholar 

  79. Perelo LW (2010) Review: in situ and bioremediation of organic pollutants in aquatic sediments. J Hazard Mater 177(1-3):81–89. https://doi.org/10.1016/j.jhazmat.2009.12.090

    CAS  Article  Google Scholar 

  80. Philippot L, Raaijmakers JM, Lemanceau P, van der Putten WH (2013) Going back to the roots: the microbial ecology of the rhizosphere. Nat Rev Microbiol 11(11):789–799. https://doi.org/10.1038/nrmicro3109

    CAS  Article  Google Scholar 

  81. Polettini A, Pomi R, Rolle E, Ceremigna D, De Propris L, Gabellini M, Tornato A (2006) A kinetic study of chelant-assisted remediation of contaminated dredged sediment. J Hazard Mater 137(3):1458–1465. https://doi.org/10.1016/j.jhazmat.2006.04.022

    CAS  Article  Google Scholar 

  82. Porzionato N, Tufo A, Candal R, Curutchet G (2017) Metal bioleaching from anaerobic sediments from Reconquista River basin (Argentina) as a potential remediation strategy. Environ Sci Pollut Res 24(33):25561–25570. https://doi.org/10.1007/s11356-016-6717-y

    CAS  Article  Google Scholar 

  83. Qian G, Chen W, Lim TT, Chui P (2009) In-situ stabilization of Pb, Zn, Cu, Cd and Ni in the multi-contaminated sediments with ferrihydrite and apatite composite additives. J Hazard Mater 170(2-3):1093–1100. https://doi.org/10.1016/j.jhazmat.2009.05.093

    CAS  Article  Google Scholar 

  84. Qian Y, Zhang W, Yu L, Feng H (2015) Metal pollution in coastal sediments. Curr Pollut Rep 1(4):203–219. https://doi.org/10.1007/s40726-015-0018-9

    Article  Google Scholar 

  85. Qiao YL, Li MH, Xie PJ, Yan LR, Zhu JF (2016) A study on the absorption of cadmium and zinc in the water sediments with submerged plants. J Zhejiang Univ 43:601–609 (in Chinese)

    Google Scholar 

  86. Sarwar N, Imran M, Shaheen MR, Ishaque W, Kamran MA, Matloob A, Rehim A, Hussain S (2017) Phytoremediation strategies for soils contaminated with heavy metals: modifications and future perspectives. Chemosphere 171:710–721. https://doi.org/10.1016/j.chemosphere.2016.12.116

    CAS  Article  Google Scholar 

  87. Schippers A, Sand W (1999) Bacterial leaching of metal sulfides proceeds by two indirect mechanisms via thiosulfate or via polysulfides and sulfur. Appl Environ Microb 65:319–321

    CAS  Google Scholar 

  88. Schwarzenbach RP, Escher BI, Fenner K, Hofstetter TB, Johnson CA, von Gunten U, Wehrli B (2006) The challenge of micropollutants in aquatic systems. Science 313(5790):1072–1077. https://doi.org/10.1126/science.1127291

    CAS  Article  Google Scholar 

  89. Seidel H, Löser C, Zehnsdorf A, Hoffmann P, Schmerold R (2004) Bioremediation process for sediments contaminated by heavy metals: feasibility study on a pilot scale. Environ Sci Technol 38(5):1582–1588. https://doi.org/10.1021/es030075d

    CAS  Article  Google Scholar 

  90. Seidel H, Wennrich R, Hoffmann P, Loser C (2006) Effect of different types of elemental sulfur on bioleaching of heavy metals from contaminated sediments. Chemosphere 62(9):1444–1453. https://doi.org/10.1016/j.chemosphere.2005.06.003

    CAS  Article  Google Scholar 

  91. Shahid M, Austruy A, Echevarria G, Arshad M, Sanaullah M, Aslam M, Nadeem M, Nasim W, Dumat C (2014) EDTA-enhanced phytoremediation of heavy metals: a review. Soil Sediment Contam 23(4):389–416. https://doi.org/10.1080/15320383.2014.831029

    CAS  Article  Google Scholar 

  92. Shin W, Kim YK (2015) Stabilization of heavy metal contaminated marine sediments with red mud and apatite composite. J Soils Sediments 16:726–735

    Article  CAS  Google Scholar 

  93. Tabak HH, Lens P, van Hullebusch ED, Dejonghe W (2005) Developments in bioremediation of soils and sediments polluted with metals and radionuclides—1. Microbial processes and mechanisms affecting bioremediation of metal contamination and influencing metal toxicity and transport. Rev Environ Sci Bio 4(3):115–156. https://doi.org/10.1007/s11157-005-2169-4

    CAS  Article  Google Scholar 

  94. Tan XY (2011) Promotion effect of filamentous bacteria on bioleaching of heavy metals from contaminated sediment. MSc thesis, Hunan University, Changsha, China (in Chinese)

  95. Tang W, Shan B, Zhang H, Zhang W, Zhao Y, Ding Y, Rong N, Zhu X (2014) Heavy metal contamination in the surface sediments of representative limnetic ecosystems in eastern China. Sci Rep 4:7152

    CAS  Article  Google Scholar 

  96. Tichy R, Rulkens WH, Grotenhuis JTC, Nydl V, Cuypers C, Fajtl J (1998) Bioleaching of metals from soils or sediments. Water Sci Technol 37:119–127

    CAS  Google Scholar 

  97. Tsai LJ, Yu KC, Chen SF, Kung PY, Chang CY, Lin CH (2003) Partitioning variation of heavy metals in contaminated river sediment via bioleaching: effect of sulfur added to total solids ratio. Water Res 37(19):4623–4630. https://doi.org/10.1016/j.watres.2003.07.003

    CAS  Article  Google Scholar 

  98. Tsezos M (2009) Metal-microbes interactions: beyond environmental protection. Adv Mater Res 71-73:527–532. https://doi.org/10.4028/www.scientific.net/AMR.71-73.527

    CAS  Article  Google Scholar 

  99. Vandenbossche M, Jimenez M, Casetta M, Traisnel M (2014) Remediation of heavy metals by biomolecules: a review. Crit Rev Env Sci Tec 45:1644–1704

    Article  CAS  Google Scholar 

  100. Vassilev A, Schwitzguebel JP, Thewys T, Van Der Lelie D, Vangronsveld J (2004) The use of plants for remediation of metal-contaminated soils. Sci World J 4:9–34. https://doi.org/10.1100/tsw.2004.2

    CAS  Article  Google Scholar 

  101. Vera M, Schippers A, Sand W (2013) Progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation—part a. Appl Microbiol Biot 97(17):7529–7541. https://doi.org/10.1007/s00253-013-4954-2

    CAS  Article  Google Scholar 

  102. Vitor G, Palma TC, Vieira B, Lourenço JP, Barros RJ, Costa MC (2015) Start-up, adjustment and long-term performance of a two-stage bioremediation process, treating real acid mine drainage, coupled with biosynthesis of ZnS nanoparticles and ZnS/TiO2 nanocomposites. Miner Eng 75:85–93. https://doi.org/10.1016/j.mineng.2014.12.003

    CAS  Article  Google Scholar 

  103. Walker DJ, Clemente R, Bernal MP (2004) Contrasting effects of manure and compost on soil pH, heavy metal availability and growth of Chenopodium album L. in a soil contaminated by pyritic mine waste. Chemosphere 57(3):215–224. https://doi.org/10.1016/j.chemosphere.2004.05.020

    CAS  Article  Google Scholar 

  104. Wan Y (2012) A study on mechanism and application of endohytic bacteria in heavy metal phytoremediation. PhD thesis, Hunan University, Changsha, China (in Chinese)

  105. Wang L, Kwok JS, Tsang DC, Poon CS (2015a) Mixture design and treatment methods for recycling contaminated sediment. J Hazard Mater 283:623–632. https://doi.org/10.1016/j.jhazmat.2014.09.056

    CAS  Article  Google Scholar 

  106. Wang L, Tsang DC, Poon CS (2015b) Green remediation and recycling of contaminated sediment by waste-incorporated stabilization/solidification. Chemosphere 122:257–264. https://doi.org/10.1016/j.chemosphere.2014.11.071

    CAS  Article  Google Scholar 

  107. Wen J, Yi Y, Zeng G (2016) Effects of modified zeolite on the removal and stabilization of heavy metals in contaminated lake sediment using BCR sequential extraction. J Environ Manag 178:63–69. https://doi.org/10.1016/j.jenvman.2016.04.046

    CAS  Article  Google Scholar 

  108. Wu S, Zhang X, Chen B, Wu Z, Li T, Hu Y, Sun Y, Wang Y (2016) Chromium immobilization by extraradical mycelium of arbuscular mycorrhiza contributes to plant chromium tolerance. Environ Exp Bot 122:10–18. https://doi.org/10.1016/j.envexpbot.2015.08.006

    CAS  Article  Google Scholar 

  109. Xie PJ, Li MH, Yan LR, Qiao YL (2016) Remediation of Cu and Pb co-polluted sediments by three submerged plants. J Agro-Environ Sci 35:757–763 (in Chinese)

    CAS  Google Scholar 

  110. Xu Y (2017) Stabilization of heavy metal-contaminated sediment with a chelator and humic acid mixture. Water Air Soil Poll 228(1):20. https://doi.org/10.1007/s11270-016-3198-z

    Article  CAS  Google Scholar 

  111. Yan M, Zeng G, Li X, He J, Chen G, Huang D, Tang L, Lai C, Zhang C, Li X, Wang L, Guo Z, Tao W (2017) Incentive effect of bentonite and concrete admixtures on stabilization/solidification for heavy metal-polluted sediments of Xiangjiang River. Environ Sci Pollut Res 24(1):892–901. https://doi.org/10.1007/s11356-016-7527-y

    CAS  Article  Google Scholar 

  112. Yu GW (2007) In situ sediment remediation of heavily polluted Tidal River: technologies research and application. PhD thesis, Sun Yat-Sen University, Guangzhou, China (in Chinese)

  113. Yu G, Lei H, Bai T, Li Z, Yu Q, Song X (2009) In-situ stabilisation followed by ex-situ composting for treatment and disposal of heavy metals polluted sediments. J Environ Sci 21(7):877–883. https://doi.org/10.1016/S1001-0742(08)62357-8

    CAS  Article  Google Scholar 

  114. Zeng X, Twardowska I, Wei S, Sun L, Wang J, Zhu J, Cai J (2015a) Removal of trace metals and improvement of dredged sediment dewaterability by bioleaching combined with Fenton-like reaction. J Hazard Mater 288:51–59. https://doi.org/10.1016/j.jhazmat.2015.02.017

    CAS  Article  Google Scholar 

  115. Zeng X, Wei S, Sun L, Jacques DA, Tang J, Lian M, Ji Z, Wang J, Zhu J, Xu Z (2015b) Bioleaching of heavy metals from contaminated sediments by the Aspergillus niger strain SY1. J Soils Sediments 15(4):1029–1038. https://doi.org/10.1007/s11368-015-1076-8

    CAS  Article  Google Scholar 

  116. Zhang M, Wang H (2016) Preparation of immobilized sulfate reducing bacteria (SRB) granules for effective bioremediation of acid mine drainage and bacterial community analysis. Miner Eng 92:63–71. https://doi.org/10.1016/j.mineng.2016.02.008

    CAS  Article  Google Scholar 

  117. Zhang C, Yu ZG, Zeng GM, Jiang M, Yang ZZ, Cui F, Zhu MY, Shen LQ, Hu L (2014) Effects of sediment geochemical properties on heavy metal bioavailability. Environ Int 73:270–281. https://doi.org/10.1016/j.envint.2014.08.010

    CAS  Article  Google Scholar 

  118. Zhang M, Wang H, Han X (2016a) Preparation of metal-resistant immobilized sulfate reducing bacteria beads for acid mine drainage treatment. Chemosphere 154:215–223. https://doi.org/10.1016/j.chemosphere.2016.03.103

    CAS  Article  Google Scholar 

  119. Zhang YH, Huang LL, Yang LK, Liu CY, Wang CJ, Zhang ZB, Sun CZ (2016b) In-situ remediation technology for river sediments contaminated by heavy metals. Water Purif Technol 35:26–32 (in Chinese)

    CAS  Google Scholar 

  120. Zhu QQ, Wang ZL (2012) Distribution characteristics and source analysis of heavy metals in sediments of the main river systems in China. Earth Environ 40:305–313 (in Chinese)

    Google Scholar 

  121. Zoubeir L, Adeline S, Laurent CS, Yoann C, Truc HT, le Benoit G, Federico A (2007) The use of the Novosol process for the treatment of polluted marine sediment. J Hazard Mater 148(3):606–612. https://doi.org/10.1016/j.jhazmat.2007.03.029

    CAS  Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (51778031, 21707006 and 51708012), Beijing Natural Science Foundation (8142027), Excellence Foundation of BUAA for Ph.D. Students (2017068), and the open projects of collaborative innovation center of Suzhou Regional Development (2015SZXTZXKF04).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Wenhong Fan.

Additional information

Responsible editor: Gijs D. Breedveld

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Peng, W., Li, X., Xiao, S. et al. Review of remediation technologies for sediments contaminated by heavy metals. J Soils Sediments 18, 1701–1719 (2018). https://doi.org/10.1007/s11368-018-1921-7

Download citation

Keywords

  • Bioremediation
  • Heavy metals
  • Remediation
  • Sediment
  • Sulfate-reducing bacteria