A 300-year record of sedimentation in a small tilled catena in Hungary based on δ13C, δ15N, and C/N distribution
- 91 Downloads
Abstract
Purpose
Soil erosion is one of the most serious hazards that endanger sustainable food production. Moreover, it has marked effects on soil organic carbon (SOC) with direct links to global warming. At the same time, soil organic matter (SOM) changes in composition and space could influence these processes. The aim of this study was to predict soil erosion and sedimentation volume and dynamics on a typical hilly cropland area of Hungary due to forest clearance in the early eighteenth century.
Materials and methods
Horizontal soil samples were taken along two parallel intensively cultivated complex convex-concave slopes from the eroded upper parts at mid-slope positions and from sedimentation in toe-slopes. Samples were measured for SOC, total nitrogen (TN) content, and SOM compounds (δ13C, δ15N, and photometric indexes). They were compared to the horizons of an in situ non-eroded profile under continuous forest. On the depositional profile cores, soil depth prior to sedimentation was calculated by the determination of sediment thickness.
Results and discussion
Peaks of SOC in the sedimentation profiles indicated thicker initial profiles, while peaks in C/N ratio and δ13C distribution showed the original surface to be ~ 20 cm lower. Peaks of SOC were presumed to be the results of deposition of SOC-enriched soil from the upper slope transported by selective erosion of finer particles (silts and clays). Therefore, changes in δ13C values due to tillage and delivery would fingerprint the original surface much better under the sedimentation scenario than SOC content. Distribution of δ13C also suggests that the main sedimentation phase occurred immediately after forest clearance and before the start of intense cultivation with maize.
Conclusions
This highlights the role of relief in sheet erosion intensity compared to intensive cultivation. Patterns of δ13C indicate the original soil surface, even in profiles deposited as sediment centuries ago. The δ13C and C/N decrease in buried in situ profiles had the same tendency as recent forest soil, indicating constant SOM quality distribution after burial. Accordingly, microbiological activity, root uptake, and metabolism have not been effective enough to modify initial soil properties.
Keywords
δ13C δ15N Sedimentation Soil erosion Soil organic carbonNotes
Acknowledgements
The corresponding author was supported by the Bolyai János Fellowship of the Hungarian Academy of Sciences. The study was supported by OTKA K-100180. The authors are also grateful to E. Mészáros for SOC measurements and to the anonymous reviewers for their comments and suggestions.
References
- Amundson R, Austin AT, Schuur EAG, Yoo K, Matzek V, Kendall C, Uebersax A, Brenner D, Baisden WT (2003) Global patterns of the isotopic composition of soil and plant nitrogen. Glob Biogeochem Cycles 17:1031CrossRefGoogle Scholar
- Austin AT, Vitousek PM (1998) Nutrient dynamics on a precipitation gradient in Hawaii. Oecologia 113(4):519–529. https://doi.org/10.1007/s004420050405 CrossRefGoogle Scholar
- Bai E, Boutton TV, Liu F, XB W, Hallmark CT, Archer SR (2012) Spatial variation of soil δ13C and its relation to carbon input and soil texture in a subtropical lowland woodland. Soil Biol Biochem 4:102–112CrossRefGoogle Scholar
- Balesdent J, Mariotti A, Guillet B (1987) Natural 13C abundance as a tracer for studies of soil organic matter dynamics. Soil Biol Biochem 19(1):25–30. https://doi.org/10.1016/0038-0717(87)90120-9 CrossRefGoogle Scholar
- Bellanger B, Huon S, Velasquez F, Valles V, Girardin C, Mariotti A (2004) Monitoring soil organic carbon erosion with δ13C and δ15N on experimental field plots in the Venezuelan Andes. Catena 58(2):125–150. https://doi.org/10.1016/j.catena.2004.03.002 CrossRefGoogle Scholar
- Bird MI, Veenendaal EM, Lloyd JJ (2004) Soil carbon inventories and δ13C along a moisture gradient in Botswana. Glob Chang Biol 13(3):342–349CrossRefGoogle Scholar
- Boddey RM, Peoples MB, Palmer B, Dart PJ (2000) Use of the 15N natural abundance technique to quantify biological nitrogen fixation by woody perennials. Nutr Cycl Agroecosyst 57(3):235–270. https://doi.org/10.1023/A:1009890514844 CrossRefGoogle Scholar
- Buurman P, van Lagen B, Velthorst EJ (eds) (1996) Manual for soil and water analysis. Backhuys Publishers, LeidenGoogle Scholar
- Centeri, Cs, Jakab G, Szabó SZ, Farsang A,·Barta K,·Szalai Z, Bíró ZS (2015) Comparison of particle-size analyzing laboratory methods. Environ Eng Manag J 14(5):1125–1135Google Scholar
- Cerdan O, Govers G, Le Bissonnais Y, Van Oost K, Poesen J, Saby N, Gobin A, Vacca A, Quinton J, Auerswald K, Klik A, Kwaad FJPM, Raclot D, Ionita I, Rejman J, Rousseva S, Muxart T, Roxo MJ, Dostal T (2010) Rates and spatial variations of soil erosion in Europe: a study based on erosion plot data. Geomorphology 122(1–2):167–177. https://doi.org/10.1016/j.geomorph.2010.06.011 CrossRefGoogle Scholar
- Chin YP, Aiken G, Loughlin EO (1994) Molecular weight, polydispersity, and spectroscopic properties of aquatic humic substances. Environ Sci Technol 28(11):1853–1858. https://doi.org/10.1021/es00060a015 CrossRefGoogle Scholar
- Conforti M, Buttafuoco G, Leone AP, Aucelli PPC, Robustelli G, Scarciglia F (2013) Studying the relationship between water-induced soil erosion and soil organic matter using Vis–NIR spectroscopy and geomorphological analysis: a case study in southern Italy. Catena 110:44–58. https://doi.org/10.1016/j.catena.2013.06.013 CrossRefGoogle Scholar
- Coplen TB (2011) Guidelines and recommended terms for expression of stable-isotope-ratio and gas-ratio measurement results. Rapid Commun Mass Spectrom 25(17):2538–2560. https://doi.org/10.1002/rcm.5129 CrossRefGoogle Scholar
- Craine JM, Brookshire ENJ, Cramer MD, Hasselquist NJ, Koba K, Marin-Spiotta E, Wang L (2015) Ecological interpretations of nitrogen isotope ratios of terrestrial plants and soils. Plant Soil 396(1–2):1–26. https://doi.org/10.1007/s11104-015-2542-1 CrossRefGoogle Scholar
- De Clercq T, Heiling M, Dercon G, Resch C, Aigner M, Mayer L, Mao Y, Elsen A, Steier P, Leifeld J, Merckx R (2015) Predicting soil organic matter stability in agricultural fields through carbon and nitrogen stable isotopes. Soil Biol Biochem 88:29–38. https://doi.org/10.1016/j.soilbio.2015.05.011 CrossRefGoogle Scholar
- Dijkstra P, Ishizu A, Doucett R, Hart SC, Schwartz E, Menyailo OV, Hungate BA (2006) C-13 and N-15 natural abundance of the soil microbial biomass. Soil Biol Biochem 38(11):3257–3266. https://doi.org/10.1016/j.soilbio.2006.04.005 CrossRefGoogle Scholar
- Doetterl S, Berhe AA, Nadeu E, Wang Z, Sommer M, Fiener P (2016) Erosion, deposition and soil carbon: a review of process-level controls, experimental tools and models to address C cycling in dynamic landscapes. Earth-Sci Rev 154:102–122. https://doi.org/10.1016/j.earscirev.2015.12.005 CrossRefGoogle Scholar
- Dövényi Z (ed) (2010) Inventory of microregions in Hungary. MTAFKI, Budapest (in Hungarian)Google Scholar
- Esfahani MR, Stretz HA, Wells MJM (2015) Abiotic reversible self-assembly of fulvic and humic acid aggregates in low electrolytic conductivity solutions by dynamic light scattering and zeta potential investigation. Sci Total Environ 537:81–92. https://doi.org/10.1016/j.scitotenv.2015.08.001 CrossRefGoogle Scholar
- Farsang A, Kitka G, Barta K, Puskás I (2012) Estimating element transport rates on sloping agricultural land at catchment scale (Velence Mts., NW Hungary). Carpath J Earth Environ Sci 7(4):15–26Google Scholar
- Fiener P, Dlugoß V, Van Oost K (2015) Erosion-induced carbon redistribution, burial and mineralisation—is the episodic nature of erosion processes important? Catena 133:282–292CrossRefGoogle Scholar
- Freyer HD, Aly AIM (1974) Nitrogen 15 variations in fertilizer nitrogen. J Environ Qual 3(4):405–406. https://doi.org/10.2134/jeq1974.00472425000300040023x CrossRefGoogle Scholar
- Guillaume T, Damris M, Kuzyakov Y (2015) Losses of soil carbon by converting tropical forest to plantations: erosion and decomposition estimated by δ13C. Glob Chang Biol 21(9):3548–3560. https://doi.org/10.1111/gcb.12907 CrossRefGoogle Scholar
- Gunina A, Kuzyakov Y (2014) Pathways of litter C by formation of aggregates and SOM density fractions: implications from 13C natural abundance. Soil Biol Biochem 71:95–104. https://doi.org/10.1016/j.soilbio.2014.01.011 CrossRefGoogle Scholar
- Hadi G (2006) Maize varieties in Eastern Central Europe in the first decades of the 20th century. Acta Agronomica Hungarica 54(1):69–82. https://doi.org/10.1556/AAgr.54.2006.1.7 CrossRefGoogle Scholar
- Handley LL, Raven JA (1992) The use of natural abundance of nitrogen isotopes in plant physiology and ecology. Plant Cell Environ 15(9):965–985. https://doi.org/10.1111/j.1365-3040.1992.tb01650.x CrossRefGoogle Scholar
- Her N, Amy G, Sohn J, Gunten U (2008) UV absorbance ratio index with size exclusion chromatography (URI-SEC) as an NOM property indicator. J Water Supply Res Technol AQUA 57(1):35–44. https://doi.org/10.2166/aqua.2008.029 CrossRefGoogle Scholar
- Hu Y, Kuhn NJ (2016) Erosion-induced exposure of SOC to mineralization in aggregated sediment. Catena 137:517–525. https://doi.org/10.1016/j.catena.2015.10.024 CrossRefGoogle Scholar
- IUSS Working Group WRB (2015) World reference base for soil resources 2014, update 2015 international soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. FAO, RomeGoogle Scholar
- Jakab G, Kertész Á (2014) Does soil erosion sequestrate soil organic carbon? In: Halldórsson G, Bampa F, Þórsteinsdóttir AB, Sigurdsson BD, Montanarella L, Arnalds A (eds) Soil carbon sequestration for climate food security and ecosystem services: Proceedings of the International Conference 27-29 May 2013 Reykjavik Iceland. Publications Office of the European Union, Luxembourg, pp 233–238Google Scholar
- Jakab G, Szabó J, Szalai Z, Mészáros E, Madarász B, Centeri C, Szabó B, Németh T, Sipos P (2016) Changes in organic carbon concentration and organic matter compound of erosion-delivered soil aggregates. Environ Earth Sci 75(2):1–11CrossRefGoogle Scholar
- Jankauskas B, Fullen MA (2002) A pedological investigation of soil erosion severity on undulating land in Lithuania. Can J Soil Sci 82(3):311–321. https://doi.org/10.4141/S01-058 CrossRefGoogle Scholar
- Kerley SJ, Jarvis SC (1997) Variation in 15N natural abundance of soil, humic fractions and plant materials in a disturbed and an undisturbed grassland. Biol Fertil Soils 24(2):147–152. https://doi.org/10.1007/s003740050223 CrossRefGoogle Scholar
- Kerley SJ, Jarvis SC (1999) The use of 15N natural abundance variation to examine plant and soil organic fractions in pasture under different management practices. Biol Fertil Soils 29(2):135–140. https://doi.org/10.1007/s003740050535 CrossRefGoogle Scholar
- Koba K, Isobe K, Takebayashi Y, Fang YT, Sasaki Y, Saito W, Yoh M, Mo J, Liu L, Lu X, Zhang T, Zhang W, Senoo K (2010) Delta 15N of soil N and plants in a N-saturated, subtropical forest of southern China. Rapid Commun Mass Spectrom 24(17):2499–2506. https://doi.org/10.1002/rcm.4648 CrossRefGoogle Scholar
- Konert M, Vandenberghe J (1997) Comparison of laser grain size analysis with pipette and sieve analysis: a solution for the underestimation of the clay fraction. Sedimentol 44(3):523–535. https://doi.org/10.1046/j.1365-3091.1997.d01-38.x CrossRefGoogle Scholar
- Kononova MM (1966) Soil organic matter: its nature, its role in soil formation and in soil fertility, 2nd edn. Pergamon Press, OxfordGoogle Scholar
- Kreitler CW, Ragone SE, Katz BG (1978) N15 / N14 ratios of ground-water nitrate, Long Island, New York. Ground Water 16(6):404–409. https://doi.org/10.1111/j.1745-6584.1978.tb03254.x CrossRefGoogle Scholar
- Kuhn NJ, Armstrong EK, Ling AC, Connolly KL, Heckrath G (2012) Interrill erosion of carbon and phosphorus from conventionally and organically farmed Devon silt soils. Catena 91:94–103. https://doi.org/10.1016/j.catena.2010.10.002 CrossRefGoogle Scholar
- Laceby JP, Olley J, Pietsch TJ, Sheldon F, Bunn SE (2015) Identifying subsoil sediment sources with carbon and nitrogen stable isotope ratios. Hydrol Process 29(8):1956–1971. https://doi.org/10.1002/hyp.10311 CrossRefGoogle Scholar
- Lal R, Pimentel D, Van Oost K, Six J, Govers G, Quine T, De Gryze S (2008) Soil erosion: a carbon sink or source? Science 319(5866):1040–1042. https://doi.org/10.1126/science.319.5866.1040 CrossRefGoogle Scholar
- Lehmann J, Kleber M (2015) The contentious nature of soil organic matter. Nature 528(7580):60–68. https://doi.org/10.1038/nature16069 CrossRefGoogle Scholar
- Levin I, Schuchard J, Kromer B, Münnich KO (1989) The continental European Suess effect. Radiocarbon 31(3):431–440. https://doi.org/10.1017/S0033822200012017 CrossRefGoogle Scholar
- Liang BC, Mackenzie AF, Gregorich EG (1999) Changes in 15N abundance and amounts of biologically active soil nitrogen. Biol Fertil Soils 30(1-2):69–74. https://doi.org/10.1007/s003740050589 CrossRefGoogle Scholar
- Mabit L, Benmansour M, Walling DE (2008) Comparative advantages and limitations of the fallout radionuclides 137Cs, 210Pbex and 7Be for assessing soil erosion and sedimentation. J Environ Radioact 99(12):1799–1807. https://doi.org/10.1016/j.jenvrad.2008.08.009 CrossRefGoogle Scholar
- Mie G (1908) Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Leipzig, Annalen der Physik 330(3):377–445 (in German). https://doi.org/10.1002/andp.19083300302 CrossRefGoogle Scholar
- Mukundan R, Radcliffe DE, Ritchie JC, Risse LM, McKinley RA (2010) Sediment fingerprinting to determine the source of suspended sediment in a southern Piedmont stream. J Environ Qual 39(4):1328–1337. https://doi.org/10.2134/jeq2009.0405 CrossRefGoogle Scholar
- Nottingham AT, Turner BL, Stott AW, Tanner EVJ (2015) Nitrogen and phosphorus constrain labile and stable carbon turnover in lowland tropical forest soils. Soil Biol Biochem 80:26–33. https://doi.org/10.1016/j.soilbio.2014.09.012 CrossRefGoogle Scholar
- Novara A, La Mantia T, Rühl J, Badalucco L, Kuzyakov Y, Gristina L, Laudicina VA (2014a) Dynamics of soil organic carbon pools after agricultural abandonment. Geoderma 235-236:191–198. https://doi.org/10.1016/j.geoderma.2014.07.015 CrossRefGoogle Scholar
- Novara A, Pereira P, Santoro A, Kuzyakov Y, La Mantia T (2014b) Effect of cactus pear cultivation after Mediterranean maquis on soil carbon stock, d13C spatial distribution and root turnover. Catena 118:84–90. https://doi.org/10.1016/j.catena.2014.02.002 CrossRefGoogle Scholar
- Novara A, Cerdà A, Dazzi C, Lo Papa G, Santoro A, Gristina L (2015) Effectiveness of carbon isotopic signature for estimating soil erosion and deposition rates in Sicilian vineyards. Soil Tillage Res 152:1–7CrossRefGoogle Scholar
- Pansu M, Gautheyrou J (2006) Handbook of soil analysis. Mineralogical, organic and inorganic methods. Springer, BerlinCrossRefGoogle Scholar
- Parras-Alcántara L, Lozano-García B, Brevik EC, Cerdá A (2015) Soil organic carbon stocks assessment in Mediterranean natural areas: a comparison of entire soil profiles and soil control sections. J Environ Manag 155:219–228. https://doi.org/10.1016/j.jenvman.2015.03.039 CrossRefGoogle Scholar
- Poesen J (2015) Soil erosion hazard and mitigation in the Euro-Mediterranean region: do we need more research? Hungarian Geog Bull 64(4):293–299. https://doi.org/10.15201/hungeobull.64.4.3 CrossRefGoogle Scholar
- Polyakov VO, Lal R (2008) Soil organic matter and CO2 emission as affected by water erosion on field runoff plots. Geoderma 143(1-2):216–222. https://doi.org/10.1016/j.geoderma.2007.11.005 CrossRefGoogle Scholar
- Schneckenberger K, Kuzyakov Y (2007) Carbon sequestration under Miscanthus in sandy and loamy soils estimated by natural 13C abundance. J Plant Nutr Soil Sci 170(4):538–542. https://doi.org/10.1002/jpln.200625111 CrossRefGoogle Scholar
- Snider DM, Wagner-Riddle C, Spoelstra J (2017) Stable isotopes reveal rapid cycling of soil nitrogen after manure application. J Environ Qual 46(2):261–271. https://doi.org/10.2134/jeq2016.07.0253 CrossRefGoogle Scholar
- Stevenson BA, Kelly EF, McDonald EV, Busacca AJ (2005) The stable carbon isotope composition of soil organic carbon and pedogenic carbonates along a bioclimatic gradient in the Palouse region, Washington State, USA. Geoderma 124(1-2):37–47. https://doi.org/10.1016/j.geoderma.2004.03.006 CrossRefGoogle Scholar
- Suess HE (1955) Radiocarbon concentration in modern wood. Science 122(3166):415–417. https://doi.org/10.1126/science.122.3166.415-a CrossRefGoogle Scholar
- Szabó J, Jakab G, Szabó B (2015) Spatial and temporal heterogeneity of runoff and soil loss dynamics under simulated rainfall. Hungarian Geog Bull 64(1):25–34. https://doi.org/10.15201/hungeobull.64.1.3 CrossRefGoogle Scholar
- Szabó J, Szabó B, Szalai Z, Ringer M, Jakab G (2017) Runoff and infiltration—case study of a Cambisol. Columella 4:127–130CrossRefGoogle Scholar
- Szalai Z, Szabó J, Kovács J, Mészáros E, Albert G, Centeri C, Szabó B, Madarász B, Zacháry D, Jakab G (2016) Redistribution of soil organic carbon triggered by erosion at field scale under subhumid climate, Hungary. Pedosphere 26(5):652–665. https://doi.org/10.1016/S1002-0160(15)60074-1 CrossRefGoogle Scholar
- Tan KH (2003) Humic matter in soil and the environment principles and controversies. Marcel Dekker Inc, New York. https://doi.org/10.1201/9780203912546 CrossRefGoogle Scholar
- Tiessen H, Karamanos RE, Stewart JWB, Selles F (1984) Natural nitogen-15 abundance as an indicator of soil organic matter transformations in native and cultivated soils. Soil Sci Soc Am J 48(2):312–315. https://doi.org/10.2136/sssaj1984.03615995004800020017x CrossRefGoogle Scholar
- Van Oost K, Quinie TA, Govers G, De Gryze S, Six J, Harden JW, Ritchie JC, McCarty GW, Heckrath G, Kosmas C, Giraldez JV, Marques da Silva JR, Merckx R (2007) The impact of agricultural soil erosion on the global carbon cycle. Science 318(5850):626–629. https://doi.org/10.1126/science.1145724 CrossRefGoogle Scholar
- Vanwalleghem T, Bork HR, Poesen J, Dotterweich M, Schmidtchen G, Deckers J, Scheers S, Martens M (2006) Prehistoric and Roman gullying in the European loess belt: a case study from central Belgium. The Holocene 16(3):393–401. https://doi.org/10.1191/0959683606hl935rp CrossRefGoogle Scholar
- Vázquez CF, Prieto SG, Cortizas AM, Boado FC (2015) Deciphering the evolution of agrarian technologies during the last ~1600 years using the isotopic fingerprint (δ13C, δ15N) of a polycyclic terraced soil. Estudos do Quaternário, 12, APEQ, Braga, pp 39-53Google Scholar
- Viscarra Rossel RA, Walvoort DJJ, McBratney AB, Skjemstad JO (2006) Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties. Geoderma 131(1–2):59–75. https://doi.org/10.1016/j.geoderma.2005.03.007 CrossRefGoogle Scholar
- Wang Z, Govers G, Steegen A, Clymans W, Van den Putte A, Langhans C, Merckx R, Van Oost K (2010) Catchment-scale carbon redistribution and delivery by water erosion in an intensively cultivated area. Geomorphology 124(1-2):65–74. https://doi.org/10.1016/j.geomorph.2010.08.010 CrossRefGoogle Scholar
- Wang A, Fang YT, Chen DX, Koba K, Makabe A, Li YD, Luo TS, Yoh M (2014) Variations in nitrogen-15 natural abundance of plant and soil systems in four remote tropical rainforests, southern China. Oecologia 174(2):567–580. https://doi.org/10.1007/s00442-013-2778-5 CrossRefGoogle Scholar
- Watteau F, Villemin G, Bartoli F, Schwartz C, Morel J (2012) 0–20 μm aggregate typology based on the nature of aggregative organic materials in a cultivated silty topsoil. Soil Biol Biochem 46:103–114. https://doi.org/10.1016/j.soilbio.2011.11.021 CrossRefGoogle Scholar
- Werth M, Kuzyakov Y (2010) 13C fractionation at the root–microorganisms–soil interface: a review and outlook for partitioning studies. Soil Biol Biochem 42(9):1372–1384. https://doi.org/10.1016/j.soilbio.2010.04.009 CrossRefGoogle Scholar
- Wynn JG, Harden JW, Fries TL (2006) Stable carbon isotope depth profiles and soil organic carbon dynamics in the lower Mississippi Basin. Geoderma 131(1-2):89–109. https://doi.org/10.1016/j.geoderma.2005.03.005 CrossRefGoogle Scholar
- Yu F, Zong Y, Lloyd JM, Huang G, Leng MJ, Kendrick C, Lamb AL, Yim WWS (2010) Bulk organic δ13C and C/N as indicators for sediment sources in the Pearl River Delta and estuary, southern China. Estuar Coast Shelf Sci 87(4):618–630. https://doi.org/10.1016/j.ecss.2010.02.018 CrossRefGoogle Scholar
- Zhang K, Dang H, Zhang Q, Cheng X (2015) Soil carbon dynamics following land-use change varied with temperature and precipitation gradients: evidence from stable isotopes. Glob Chang Biol 21(7):2762–2772. https://doi.org/10.1111/gcb.12886 CrossRefGoogle Scholar
- Zimmermann M, Leifeld J, Schmidt MWI, Smith P, Fuhrer J (2007) Measured soil organic matter fractions can be related to pools in the RothC model. Eur J Soil Sci 58(3):658–667. https://doi.org/10.1111/j.1365-2389.2006.00855.x CrossRefGoogle Scholar
- Zollinger B, Alewell C, Kneisel C, Meusburger K, Brandová D, Kubik P, Schaller M, Ketterer M, Egli M (2015) The effect of permafrost on time-split soil erosion using radionuclides (137Cs, 239+240Pu, meteoric 10Be) and stable isotopes(δ13C) in the eastern Swiss Alps. J Soils Sediments 15(6):1400–1419. https://doi.org/10.1007/s11368-014-0881-9 CrossRefGoogle Scholar