Microalgae and their effects on metal bioavailability in paddy fields

Abstract

Purpose

Heavy metal contamination in paddy soils poses a serious threat to rice quality. However, these risks may be reduced by biological processes that sequester or transform metals into less mobile forms. Microalgae are commonly found in wetland ecosystems, but their effects on soil properties and metal uptake by rice remain unresolved. In this paper, we summarize the available literature to evaluate the role of microalgae in metal bioavailability in paddy fields.

Materials and methods

Up-to-date information was gathered and analyzed to provide a deeper understanding of metal pollution in paddy soils; factors controlling metal bioavailability; and the types of unicellular algae present, their mechanisms of metal accumulation and detoxification, and their effects on various properties such as pH, redox potential (Eh), and organic matter; as well as the bioavailability of different metal(loid)s in paddy soils.

Results and discussion

Metal accumulation in rice and its associated risks to human health do not depend on the total amount of metals in soils, but are controlled by metal bioavailability, which in turn is affected by soil chemical properties and biological processes. As an important component of the biota in paddy soils, microalgae not only contribute significantly to carbon and nitrogen fixation through photosynthesis, but also strongly modify key soil parameters including pH, Eh, dissolved oxygen, and organic matter. Such effects undoubtedly have considerable impacts on metal phytoavailability and biogeochemical cycles in paddy fields.

Conclusions and perspectives

Although many studies have been carried out to classify microalgae and describe their ecological functions, the effects of microalgae on metal bioavailability have not been extensively studied and no detailed mechanisms have been elucidated. Therefore, further investigations are warranted in this field. Future research should focus on identifying additional microalgae strains, characterizing their physiological activities, and quantifying their impacts on metal uptake in rice.

This is a preview of subscription content, access via your institution.

References

  1. Aboulroos S, Helal M, Kamel M (2006) Remediation of Pb and Cd polluted soils using in situ immobilization and phytoextraction techniques. Soil Sediment Contam 15(2):199–215. https://doi.org/10.1080/15320380500506362

    CAS  Article  Google Scholar 

  2. Aiyer R, Salahudeen S, Venkataraman G (1972) Long-term algalization field trial with high-yielding varieties of rice (Oryza sativa L.) Indian J Agr Sci 42:380–383

    Google Scholar 

  3. Almas A, Singh B (2001) Plant uptake of cadmium-109 and zinc-65 at different temperature and organic matter levels. J Environ Qual 30(3):869–877. https://doi.org/10.2134/jeq2001.303869x

    CAS  Article  Google Scholar 

  4. Appleton J, Weeks J, Calvez J, Beinhoff C (2006) Impacts of mercury contaminated mining waste on soil quality, crops, bivalves, and fish in the Naboc River area, Mindanao, Philippines. Sci Total Environ 354(2-3):198–211. https://doi.org/10.1016/j.scitotenv.2005.01.042

    CAS  Article  Google Scholar 

  5. Arao T, Kawasaki A, Baba K, Mori S, Matsumoto S (2009) Effects of water management on cadmium and arsenic accumulation and dimethylarsinic acid concentrations in Japanese rice. Environ Sci Technol 43(24):9361–9367. https://doi.org/10.1021/es9022738

    CAS  Article  Google Scholar 

  6. Arunakumara K, Zhang X (2008) Heavy metal bioaccumulation and toxicity with special reference to microalgae. J Ocean Univ China 7(1):60–64. https://doi.org/10.1007/s11802-008-0060-y

    CAS  Article  Google Scholar 

  7. Arunakumara KKIU, Zhang XC, Song XJ (2008) Bioaccumulation of Pb2+ and its effects on growth, morphology and pigment contents of spirulina (Arthrospira) platensis. J Ocean Univ China 7(4):397–403. https://doi.org/10.1007/s11802-008-0397-2

    CAS  Article  Google Scholar 

  8. Arunakumara K, Walpola BC, Yoon M-H (2013) Current status of heavy metal contamination in Asia’s rice. Land Rev Environ Sci Biotechnol 12(4):355–377. https://doi.org/10.1007/s11157-013-9323-1

    CAS  Article  Google Scholar 

  9. Badawy S, Helal M, Chaudri A, Lawlor K, McGrath S (2002) Soil solid phase controls lead activity in soil solution. J Environ Qual 31(1):162–167. https://doi.org/10.2134/jeq2002.1620

    CAS  Article  Google Scholar 

  10. Bahar MM, Megharaj M, Naidu R (2013) Toxicity, transformation and accumulation of inorganic arsenic species in a microalga Scenedesmus sp. isolated from soil. J Appl Phycol 25(3):913–917. https://doi.org/10.1007/s10811-012-9923-0

    CAS  Article  Google Scholar 

  11. Bang J, Hesterberg D (2004) Dissolution of trace element contaminants from two coastal plain soils as affected by pH. J Environ Qual 33(3):891–901. https://doi.org/10.2134/jeq2004.0891

    CAS  Article  Google Scholar 

  12. Bayramoglu G, Tuzun I, Celik G, Yilmaz M, Arica MY (2006) Biosorption of mercury(II), cadmium(II) and lead(II) ions from aqueous system by microalgae Chlamydomonas reinhardtii immobilized in alginate beads. Int J Miner Process 81(1):35–43. https://doi.org/10.1016/j.minpro.2006.06.002

    CAS  Article  Google Scholar 

  13. Boivin P, Favre F, Hammecker C, Maeght J-L, Delariviere J, Poussin J-C, Wopereis M (2002) Processes driving soil solution chemistry in a flooded rice cropped vertisol: analysis of long time monitoring data. Geoderma 110(1-2):87–107. https://doi.org/10.1016/S0016-7061(02)00226-4

    CAS  Article  Google Scholar 

  14. Cao H, Chen J, Zhang J, Zhang H, Qiao L, Men Y (2010) Heavy metals in rice and garden vegetables and their potential health risks to inhabitants in the vicinity of an industrial zone in Jiangsu, China. J Environ Sci 22(11):1792–1799. https://doi.org/10.1016/S1001-0742(09)60321-1

    CAS  Article  Google Scholar 

  15. Chamon A, Gerzabek M, Mondol M, Ullah S, Rahman M, Blum W (2005) Influence of cereal varieties and site conditions on heavy metal accumulations in cereal crops on polluted soils of Bangladesh. Commun Soil Sci Plant 36(7-8):889–906. https://doi.org/10.1081/CSS-200049470

    CAS  Article  Google Scholar 

  16. Chen Z, Zhu YG, Liu WJ, Meharg AA (2005) Direct evidence showing the effect of root surface iron plaque on arsenite and arsenate uptake into rice (Oryza sativa) roots. New Phytol 165(1):91–97. https://doi.org/10.1111/j.1469-8137.2004.01241.x

    CAS  Article  Google Scholar 

  17. Chen L, Ge Y, Zhang C, Zhou Q (2009) Effect of submergence on the bioavailability of Cd in a red soil. J Agr Environ Sci 28:2333–2337

    CAS  Google Scholar 

  18. Chen CY, Chang HW, Kao PC, Pan JL, Chang JS (2012) Biosorption of cadmium by CO 2—fixing microalga Scenedesmus obliquus CNW-N. Bioresour Technol 105:74–80. https://doi.org/10.1016/j.biortech.2011.11.124

    CAS  Article  Google Scholar 

  19. Chu TTH (2011) Survey on heavy metals contaminated soils in Thai Nguyen and Hung Yen provinces in Northern Vietnam. J Vietnam Environ 1:34–39

    Google Scholar 

  20. Das D, Santra G, Mandal L (1995) Influence of blue green algae on the availability of micronutrients in soils growing rice. J Indian Soc Soil Sci 43:145–146

    CAS  Google Scholar 

  21. Debnath M, Bhadury P (2016) Adaptive responses and arsenic transformation potential of diazotrophic cyanobacteria isolated from rice fields of arsenic affected Bengal Delta Plain. J Appl Phycol 28(5):2777–2792. https://doi.org/10.1007/s10811-016-0820-9

    CAS  Article  Google Scholar 

  22. Demirbas A, Demirbas MF (2011) Importance of algae oil as a source of biodiesel. Energy Convers Manag 52(1):163–170. https://doi.org/10.1016/j.enconman.2010.06.055

    Article  Google Scholar 

  23. Deng L, Zhu X, Wang X, Su Y, Su H (2007) Biosorption of copper (II) from aqueous solutions green alga Cladophora fascicularis. Biodegradation 18(4):393–402. https://doi.org/10.1007/s10532-006-9074-6

    CAS  Article  Google Scholar 

  24. Dey H, Tayung K, Bastia A (2010) Occurrence of nitrogen fixing cyanobacteria in local rice fields of Orissa, India Ecoprint. Inter J Ecol 17:77–85

    Google Scholar 

  25. Doyle MO, Otte ML (1997) Organism induced accumulation of iron, zinc and arsenic in wetland soils. Environ Pollut 96(1):1–11. https://doi.org/10.1016/S0269-7491(97)00014-6

    CAS  Article  Google Scholar 

  26. Du Laing G, Rinklebe J, Vandecasteele B, Meers E, Tack FM (2009) Trace metal behaviour in estuarine and riverine floodplain soils and sediments: a review. Sci Total Environ 407(13):3972–3985. https://doi.org/10.1016/j.scitotenv.2008.07.025

    Article  CAS  Google Scholar 

  27. Ferrari SG, Silva PG, Gonzalez DM, Navoni JA, Silva HJ (2013) Arsenic tolerance of cyanobacteria strains with potential use in biotechnolgy. A review. Argent Microbiol 45:174–179

    CAS  Google Scholar 

  28. Fillery I, Vlek P (1986) Reappraisal of the significance of ammonia volatilization as an N loss mechanism in flooded rice fields. In: Nitrogen economy of flooded rice soils. Springer, p79–98. https://doi.org/10.1007/978-94-009-4428-2_4

  29. Fu Y, Chen M, Bi X, He Y, Ren L, Xiang W, Qiao S, Yan S, Li Z, Ma Z (2011) Occurrence of arsenic in brown rice and its relationship to soil properties from Hainan Island, China. Environ Pollut 159(7):1757–1762. https://doi.org/10.1016/j.envpol.2011.04.018

    CAS  Article  Google Scholar 

  30. Gallego SM, Pena LB, Barcia RA, Azpilicueta CE, Iannone MF, Rosales EP, Zawoznik MS, Groppa MD, Benavides MP (2012) Unravelling cadmium toxicity and tolerance in plants: insight into regulatory mechanisms. Environ Exp Bot 83:33–46. https://doi.org/10.1016/j.envexpbot.2012.04.006

    CAS  Article  Google Scholar 

  31. Gao S, Tanji K, Scardaci S, Chow A (2002) Comparison of redox indicators in a paddy soil during rice growing season. Soil Sci Soc Am J 66(3):805–817. https://doi.org/10.2136/sssaj2002.8050

    CAS  Article  Google Scholar 

  32. Ghasemi Y, Moradian A, Mohagheghzadeh A, Shokravi S, Morowvat MH (2007) Antifungal and antibacterial activity of the microalgae collected from paddy fields of Iran: characterization of antimicrobial activity of Chroococcus dispersus. J Biol Sci 7:904–910

    Article  Google Scholar 

  33. Giri S, Singh AK (2017) Human health risk assessment due to dietary intake of heavy metals through rice in the mining areas of Singhbhum Copper Belt, India. Environ Sci Pollut R 24(17):14945–14956. https://doi.org/10.1007/s11356-017-9039-9

    CAS  Article  Google Scholar 

  34. Goni M, Ahmad J, Halim M, Mottalib M, Chowdhury D (2014) Uptake and translocation of metals in different parts of crop plants irrigated with contaminated water from DEPZ area of Bangladesh. B Environ Contam Tox 92(6):726–732. https://doi.org/10.1007/s00128-014-1264-z

    CAS  Article  Google Scholar 

  35. Gupta V, Rastogi A (2008) Equilibrium and kinetic modelling of cadmium (II) biosorption by nonliving algal biomass Oedogonium sp. from aqueous phase. J Hazard Mater 153(1-2):759–766. https://doi.org/10.1016/j.jhazmat.2007.09.021

    CAS  Article  Google Scholar 

  36. Halim M, Conte P, Piccolo A (2003) Potential availability of heavy metals to phytoextraction from contaminated soils induced by exogenous humic substances. Chemosphere 52(1):265–275. https://doi.org/10.1016/S0045-6535(03)00185-1

    CAS  Article  Google Scholar 

  37. Hasan M (2013) Investigation on the nitrogen fixing cyanobacteria (BGA) in rice fields of north west region of Bangladesh. I: nonfilamentous. J Environ Sci Nat Resour 5:185–192

    Google Scholar 

  38. Hellen LE, Othman OC (2014) Levels of selected heavy metals in soil, tomatoes and selected vegetables from Lushoto district Tanzania. Int J Environ Monit Anal 2(6):313–319. 10.11648/j.ijema.20140206.13

    Article  Google Scholar 

  39. Hider RC, Kong X (2010) Chemistry and biology of siderophores. Nat Prod Rep 27(5):637–657. https://doi.org/10.1039/b906679a

    CAS  Article  Google Scholar 

  40. Honma T, Ohba H, Kaneko-Kadokura A, Makino T, Nakamura K, Katou H (2016) Optimal soil Eh, pH, and water management for simultaneously minimizing arsenic and cadmium concentrations in rice grains. Environ Sci Technol 50(8):4178–4185. https://doi.org/10.1021/acs.est.5b05424

    CAS  Article  Google Scholar 

  41. Hu Y, Liu X, Bai J, Shih K, Zeng EY, Cheng H (2013) Assessing heavy metal pollution in the surface soils of a region that had undergone three decades of intense industrialization and urbanization. Enviro Sci Pollut R 20(9):6150–6159. https://doi.org/10.1007/s11356-013-1668-z

    CAS  Article  Google Scholar 

  42. Huang H, Zhu Y, Chen Z, Yin X, Sun G (2012) Arsenic mobilization and speciation during iron plaque decomposition in a paddy soil. J Soils Sediments 12(3):402–410. https://doi.org/10.1007/s11368-011-0461-1

    CAS  Article  Google Scholar 

  43. Huertas MJ, Lopez-Maury L, Giner-Lamia J, Sanchez-Riego AM, Florencio FJ (2014) Metals in cyanobacteria: analysis of the copper, nikal, cobalt and arsenic homeostasis mechanisms. Life 4(4):865–886. https://doi.org/10.3390/life4040865

    CAS  Article  Google Scholar 

  44. Humans IWGotEoCRt (2010) IARC monographs on the evaluation of carcinogenic risks to humans. 94:v

  45. Impellitteri CA, Lu Y, Saxe JK, Allen HE, Peijnenburg WJ (2002) Correlation of the partitioning of dissolved organic matter fractions with the desorption of Cd, Cu, Ni, Pb and Zn from 18 Dutch soils. Environ Int 28(5):401–410. https://doi.org/10.1016/S0160-4120(02)00065-X

    CAS  Article  Google Scholar 

  46. Inboonchuay T, Suddhiprakarn A, Kheoruenromne I, Anusontpornperm S, Gilkes RJ (2016) Amounts and associations of heavy metals in paddy soils of the Khorat Basin, Thailand. Geoderma 7(2):120–131. https://doi.org/10.1016/j.geodrs.2016.02.002

    Article  Google Scholar 

  47. Inthorn D, Sidtitoon N, Silapanuntakul S, Incharoensakdi A (2002) Sorption of mercury, cadmium and lead by microalgae. Sci Asia 28(3):253–261. https://doi.org/10.2306/scienceasia1513-1874.2002.28.253

    CAS  Article  Google Scholar 

  48. Inubushi K, Acquaye S (2004) Role of microbial biomass in biogeochemical processes in paddy soil environments. Soil Sci Plan Nutr 50(6):793–805. https://doi.org/10.1080/00380768.2004.10408539

    CAS  Article  Google Scholar 

  49. Islam MS, Ahmed MK, Habibullah-Al-Mamun M (2014) Heavy metals in cereals and pulses: health implications in Bangladesh. J Agric Food Chem 62(44):10828–10835. https://doi.org/10.1021/jf502486q

    CAS  Article  Google Scholar 

  50. Jia L, Wang W, Li Y, Yang L (2010) Heavy metals in soil and crops of an intensively farmed area: a case study in Yucheng city, Shandong province, China. Int J Environ Res Public Health 7(2):395–412. https://doi.org/10.3390/ijerph7020395

    CAS  Article  Google Scholar 

  51. Jjemba PK (2004) Interaction of metals and metalloids with microorganisms in the environment. In: Jjemba PK (ed) Environmental microbiology principles and applications. Science Publishers, Enfield. 257–270

  52. John SG, Ruggiero CE, Hersman LE, Changshung Tung A, Neu MP (2001) Siderophore mediated plutonium accumulation by microbacterium flavescens (JG-9). Environ Chem Lett 35:2942

    CAS  Google Scholar 

  53. Kappler A, Benz M, Schink B, Brune A (2004) Electron shuttling via humic acids in microbial iron (III) reduction in a freshwater sediment. FEMS Microbiol Ecol 47(1):85–92. https://doi.org/10.1016/S0168-6496(03)00245-9

    CAS  Article  Google Scholar 

  54. Kelepertzis E, Galanos E, Mitsis I (2013) Origin, mineral speciation and geochemical baseline mapping of Ni and Cr in agricultural topsoils of Thiva valley (central Greece). J Geochem Explor 125:56–68. https://doi.org/10.1016/j.gexplo.2012.11.007

    CAS  Article  Google Scholar 

  55. Khan MA, Islam MR, Panaullah G, Duxbury JM, Jahiruddin M, Loeppert RH (2010) Accumulation of arsenic in soil and rice under wetland condition in Bangladesh. Plant Soil 333(1-2):263–274. https://doi.org/10.1007/s11104-010-0340-3

    CAS  Article  Google Scholar 

  56. Kien CN, Noi NV, Son LT, Ngoc HM, Tanaka S, Nishina T, Iwasaki K (2010) Heavy metal contamination of agricultural soils around a chromite mine in Vietnam. Soil Sci Plan Nutr 56(2):344–356. https://doi.org/10.1111/j.1747-0765.2010.00451.x

    CAS  Article  Google Scholar 

  57. Kim J-D (2006) Screening of cyanobacteria (blue-green algae) from rice paddy soil for antifungal activity against plant pathogenic fungi. Mycobiology 34(3):138–142. https://doi.org/10.4489/MYCO.2006.34.3.138

    CAS  Article  Google Scholar 

  58. Kishore Choudhary K, Bimal R (2010) Distribution of nitrogen fixing cyanobacteria (Nostocaceae) during rice cultivation in fertilized and unfertilized paddy fields Nordic. J Bot 28:100–103

    Google Scholar 

  59. Kogel-Knabner I et al (2010) Biogeochemistry of paddy soils. Geoderma 157(1-2):1–14. https://doi.org/10.1016/j.geoderma.2010.03.009

    Article  CAS  Google Scholar 

  60. Kondo M, Yasuda M (2003) Seasonal changes in N2 fixation activity and N enrichment in paddy soils as affected by soil management in the northern area of Japan. JARQ-JPN AGR RES: JARQ 37(2):105–111. https://doi.org/10.6090/jarq.37.105

    Article  Google Scholar 

  61. Krishnamurti GS, Megharaj M, Naidu R (2004) Bioavailability of cadmium organic complexes to soil algae an exception to the free ion model. J Agric Food Chem 52(12):3894–3899. https://doi.org/10.1021/jf035501t

    CAS  Article  Google Scholar 

  62. Krock T, Alkamper J, Watanabe I (1988) Effect of an Azolla cover on the conditions in floodwater. J Agron Crop Sci 161(3):185–189. https://doi.org/10.1111/j.1439-037X.1988.tb00654.x

    Article  Google Scholar 

  63. Kumar KS, Dahms HU, Won EJ, Lee JS, Shin KH (2015) Microalgae—a promising tool for heavy metal remediation. Ecotoxicol Environ Saf 113:329–352. https://doi.org/10.1016/j.ecoenv.2014.12.019

    Article  CAS  Google Scholar 

  64. Kuramata M, Abe T, Matsumoto S, Ishikawa S (2011) Arsenic accumulation and speciation in Japanese paddy rice cultivars. Soil Sci Plant Nutr 57(2):248–258. https://doi.org/10.1080/00380768.2011.565479

    CAS  Article  Google Scholar 

  65. Lakshmanan A, Anthoni Raj S, Abdul Kareem A (1993) Biofertilizers enhance dissolved oxygen content (DOC) in water. International Rice Research Notes (Philippines)

  66. Larson SL, Martin WA, Escalon BL, Thompson M (2007) Dissolution, sorption, and kinetics involved in systems containing explosives, water, and soil. Environ Sci Technol 42:786–792

    Article  CAS  Google Scholar 

  67. Lead WI (1995) Environmental health criteria 165. International Programme on International Programme on Chemical Safety World Health Organization, Geneva

    Google Scholar 

  68. Liao G, Xu Y, Chen C, Wu Q, Feng R, Guo J, Wang R, Ding Y, Sun Y, Xu Y, Xia W, Fan Z, Mo L (2016) Root application of selenite can simultaneously reduce arsenic and cadmium accumulation and maintain grain yields, but show negative effects on the grain quality of paddy rice. J Environ Manag 183(Pt 3):733–741. https://doi.org/10.1016/j.jenvman.2016.09.031

    CAS  Article  Google Scholar 

  69. Lin C-S, Chou T-L, Wu J-T (2013) Biodiversity of soil algae in the farmlands of mid-Taiwan. Bot Stud 54(1):41. https://doi.org/10.1186/1999-3110-54-41

    Article  Google Scholar 

  70. Lin Z, Schneider A, Sterckeman T, Nguyen C (2016) Ranking of mechanisms governing the phytoavailability of cadmium in agricultural soils using a mechanistic model. Plant Soil 399(1-2):89–107. https://doi.org/10.1007/s11104-015-2663-6

    CAS  Article  Google Scholar 

  71. Liu H-J, Zhang J-L, Zhang F-S (2007) Role of iron plaque in Cd uptake by and translocation within rice (Oryza sativa L.) seedlings grown in solution culture. Environ Exp Bot 59(3):314–320. https://doi.org/10.1016/j.envexpbot.2006.04.001

    CAS  Article  Google Scholar 

  72. Liu L, Chen H, Cai P, Liang W, Huang Q (2009) Immobilization and phytotoxicity of Cd in contaminated soil amended with chicken manure compost. J Hazard Mater 163(2-3):563–567. https://doi.org/10.1016/j.jhazmat.2008.07.004

    CAS  Article  Google Scholar 

  73. Liu C-F et al (2013) Accumulation of mercury in rice grain and cabbage grown on representative Chinese soils. J Zhejiang Univ Sci B 14:1144–1151

    CAS  Article  Google Scholar 

  74. Liu Z, Zhang Q, Han T, Ding Y, Sun J, Wang F, Zhu C (2015) Heavy metal pollution in a soil rice system in the Yangtze river region of China. Int J Environ Res Public Health 13(1):63. https://doi.org/10.3390/ijerph13010063

    Article  CAS  Google Scholar 

  75. Malik A (2004) Metal bioremediation through growing cells. Environ Int 30(2):261–278. https://doi.org/10.1016/j.envint.2003.08.001

    CAS  Article  Google Scholar 

  76. Mallongi A, Pataranawat P, Parkpian P (2014) Mercury emission from artisanal buladu gold mine and its bioaccumulation in rice grains, Gorontalo province, Indonesia. Adv Mater R 5:744–748

    Article  CAS  Google Scholar 

  77. Mandal L (1961) Transformation of iron and manganese in water logged rice soils. Soil Sci 91(2):121–126. https://doi.org/10.1097/00010694-196102000-00007

    CAS  Article  Google Scholar 

  78. Mandal B, Vlek P, Mandal L (1999) Beneficial effects of blue-green algae and Azolla, excluding supplying nitrogen, on wetland rice fields: a review. Biol Fert Soils 28:329–342

    CAS  Article  Google Scholar 

  79. Martinez RE, Marquez JE, Hòa HTB, Giere R (2013) Open-pit coal mining effects on rice paddy soil composition and metal bioavailabiltiy to Oryza zativa L. plants in Cam Pha, northeastern Vietnam. Environ Sci Pollut R 20(11):7686–7698. https://doi.org/10.1007/s11356-013-2030-1

    CAS  Article  Google Scholar 

  80. McCann AE, Cullimore DR (1979) Influence of pesticides on the soil algal flora. In Gunther FA (ed) Residue Reviews. Springer, New York, pp 1–31

  81. McCauley A, Jones C, Jacobsen J (2009) Soil pH and organic matter. Nutr Manag Module 8:1–12

    Google Scholar 

  82. Megharaj M, Kantachote D, Singleton I, Naidu R (2000) Effects of long term contamination of DDT on soil microflora with special reference to soil algae and algal transformation of DDT. Environ Pollut 109(1):35–42. https://doi.org/10.1016/S0269-7491(99)00231-6

    CAS  Article  Google Scholar 

  83. Mehta S, Gaur J (2005) Use of algae for removing heavy metal ions from wastewater: progress and prospects. Crit Rev Biotechnol 25(3):113–152. https://doi.org/10.1080/07388550500248571

    CAS  Article  Google Scholar 

  84. Michel C, Jean M, Coulon S, Dictor M-C, Delorme F, Morin D, Garrido F (2007) Biofilms of As (III) oxidising bacteria: formation and activity studies for bioremediation process development. Appl Microbiol Biotechnol 77(2):457–467. https://doi.org/10.1007/s00253-007-1169-4

    CAS  Article  Google Scholar 

  85. Mladenov N et al (2009) Dissolved organic matter sources and consequences for iron and arsenic mobilization in Bangladesh aquifers. Environ Sci Tecnol 44:123–128

    Article  CAS  Google Scholar 

  86. Mondal D, Polya DA (2008) Rice is a major exposure route for arsenic in Chakdaha block, Nadia district, West Bengal, India: a probilistic risk assessment. Appl Geochem 23(11):2987–2998. https://doi.org/10.1016/j.apgeochem.2008.06.025

    CAS  Article  Google Scholar 

  87. Monteiro CM, Marques AP, Castro PM, Xavier MF (2009) Characterization of Desmodesmus pleiomorphus isolated from a heavy metal-contaminated site: biosorption of zinc. Biodegradation 20(5):629–641. https://doi.org/10.1007/s10532-009-9250-6

    CAS  Article  Google Scholar 

  88. Monteiro CM, Castro PML, Malcata FX (2011) Cadmium removal by two strains of Desmodesmus pleiomorphus cells. Water Air Soil Pollut 208:17–27

    Article  CAS  Google Scholar 

  89. Muhlbachova G, Simon T, Pechova M (2005) The availability of Cd, Pb and Zn and their relationships with soil pH and microbial biomass in soils amended by natural clinoptilolite. Plant Soil Environ 51:26–33

    Article  Google Scholar 

  90. Nagajyoti P, Lee K, Sreekanth T (2010) Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett 8(3):199–216. https://doi.org/10.1007/s10311-010-0297-8

    CAS  Article  Google Scholar 

  91. Nagarajan M (2014) Effect of chromium on growth, biochemicals and nutrient accumulation of paddy (Oryza sativa L.) Int Lett Nat Sci 18:63–71

    Article  Google Scholar 

  92. Nambiar GR, Raveendran K (2009) Exploration of untapped potentiality of coastal paddy fields of Kerala (India)—a case study. Middle-East J Sci Res 4:44–47

    Google Scholar 

  93. Neubauer S, Emerson D, Megonigal J (2008) Microbial oxidation and reduction of iron in the root zone and influences on metal mobility. John Wiley and Sons, Hoboken

    Google Scholar 

  94. Nweze NO, Ude BO (2013) Algae and physico-chemical characteristics of Adani rice field, Enugu State, Nigeria. J Pharm Biol Sci 8:12–18

    Google Scholar 

  95. Otte M, Kearns C, Doyle M (1995) Accumulation of arsenic and zinc in the rhizosphere of wetland plants. Bull Environ Contam Toxicol 55(1):154–161. https://doi.org/10.1007/BF00212403

    CAS  Article  Google Scholar 

  96. Ozkutlu F, Ozturk L, Erdem H, McLaughlin M, Cakmak I (2007) Leaf applied sodium chloride promotes cadmium accumulation in durum wheat grain. Plant Soil 290(1-2):323–331. https://doi.org/10.1007/s11104-006-9164-6

    CAS  Article  Google Scholar 

  97. Pawlik-Skowronska B, Pirszel J, Kalinowska R, Skowronski T (2004) Arsenic availability, toxicity and direct role of GSH and phytochelatins in As detoxification in the green alga Stichococcus bacillaris. Aquat Toxicol 70(3):201–212. https://doi.org/10.1016/j.aquatox.2004.09.003

    CAS  Article  Google Scholar 

  98. Payus C, Talip AFA (2014) Assessment of heavy metals accumulation in paddy rice (Oryza sativa). Afr J Agric Res 9:3082–3090

    CAS  Article  Google Scholar 

  99. Ponnamperuma FN (1972) The chemistry of submerged soils. Adv Agron 24:29–96. https://doi.org/10.1016/S0065-2113(08)60633-1

    CAS  Article  Google Scholar 

  100. Prasanna R, Jaiswal P, Nayak S, Sood A, Kaushik BD (2009) Cyanobacterial diversity in the rhizosphere of rice and its ecological significance. Indian J Microbiol 49(1):89–97. https://doi.org/10.1007/s12088-009-0009-x

    CAS  Article  Google Scholar 

  101. Prost R, Yaron B (2001) Use of modified clays for controlling soil environmental quality. Soil Sci 166(12):880–895. https://doi.org/10.1097/00010694-200112000-00003

    CAS  Article  Google Scholar 

  102. Querol X, Alastuey A, Moreno N, Alvarez-Ayuso E, Garcı́a-Sánchez A, Cama J, Ayora C, Simón M (2006) Immobilization of heavy metals in polluted soils by the addition of zeolitic material synthesized from coal fly ash. Chemosphere 62(2):171–180. https://doi.org/10.1016/j.chemosphere.2005.05.029

    CAS  Article  Google Scholar 

  103. Rai U, Pandey K, Sinha S, Singh A, Saxena R, Gupta D (2004) Revegetating fly ash landfills with Prosopis juliflora L.: impact of different amendments and rhizobium inoculation. Environ Int 30(3):293–300. https://doi.org/10.1016/S0160-4120(03)00179-X

    CAS  Article  Google Scholar 

  104. Rangsayatorn N, Upatham E, Kruatrachue M, Pokethitiyook P, Lanza G (2002) Phytoremediation potential of spirulina (Arthrospira) platensis: biosorption and toxicity studies of cadmium. Environ Pollut 119(1):45–53. https://doi.org/10.1016/S0269-7491(01)00324-4

    CAS  Article  Google Scholar 

  105. Rochayati S, Verloo M, Laing GD (2010) Availability of cadmium and zinc as affected by the use of reactive phosphate rock, lime, and chicken manure on an Indonesian acidic upland soil under field conditions. Commun Soil Sci Plant 41:1986–2003

    CAS  Article  Google Scholar 

  106. Rodriguez-Iruretagoiena A, Fdez-Ortiz de Vallejuelo S, Gredilla A, Ramos CG, MLS O, Arana G, de Diego A, Madariaga JM, LFO S (2015) Fate of hazardous elements in agricultural soils surrounding a coal power plant complex from Santa Catarina (Brazil). Sci Total Environ 508:374–382. https://doi.org/10.1016/j.scitotenv.2014.12.015

    CAS  Article  Google Scholar 

  107. Roger PA, Kulasooriya SA (1980) Blue-green algae and rice. The International Rice Research Institute, Los Banos, pp 112

  108. Roger P-A, Reynaud P-A (1982) Free-living blue-green algae in tropical soils microbiology of tropical soils and plant productivity. Martinus Nijhoff Publisher, La Hague, pp 147–168

    Google Scholar 

  109. Roger P-A, Grant I, Reddy P, Watanabe I (1987) The photosynthetic aquatic biomass in wetland rice fields and its effect on nitrogen dynamics. Efficiency of nitrogen fertilizers for rice p 43–68

  110. Romera E, Gonzalez F, Ballester A, Blazquez M, Munoz J (2006) Biosorption with algae: a statistical review. Crit Rev Biotechnol 26(4):223–235. https://doi.org/10.1080/07388550600972153

    CAS  Article  Google Scholar 

  111. Rossman TG (2003) Mechanism of arsenic carcinogenesis: an integrated approach. Mutat Res Fundam Mol Mech 533(1-2):37–65. https://doi.org/10.1016/j.mrfmmm.2003.07.009

    CAS  Article  Google Scholar 

  112. Saha K, Mandal L (1979) Effect of algal growth on the availability of phosphorus, iron and manganese in rice soils. Plant Soil 52(2):139–149. https://doi.org/10.1007/BF02184556

    CAS  Article  Google Scholar 

  113. Saha K, Panigrahi B, Singh P (1982) Blue-green algae or Azolla additions on the nitrogen and phosphorus availability and redox potential of a flooded rice soil. Soil Biol Biochem 14(1):23–26. https://doi.org/10.1016/0038-0717(82)90072-4

    CAS  Article  Google Scholar 

  114. Saito M, Watanabe I (1978) Organic matter production in rice field flood water. Soil Sci Plant Nutr 24(3):427–440. https://doi.org/10.1080/00380768.1978.10433121

    Article  Google Scholar 

  115. Sebastian A, Prasad M (2014) Photosynthesis mediated decrease in cadmium translocation protect shoot growth of Oryza sativa seedlings up on ammonium phosphate–sulfur fertilization. Environ Sci Pollut Res 21(2):986–997. https://doi.org/10.1007/s11356-013-1948-7

    CAS  Article  Google Scholar 

  116. Shan Y, Tysklind M, Hao F, Ouyang W, Chen S, Lin C (2013) Identification of sources of heavy metals in agricultural soils using multivariate analysis and GIS. J Soils Sediments 13(4):720–729. https://doi.org/10.1007/s11368-012-0637-3

    CAS  Article  Google Scholar 

  117. Singh R, Agrawal M (2010) Variations in heavy metal accumulation, growth and yield of rice plants grown at different sewage sludge amendment rates. Ecotoxicol Environ Saf 73(4):632–641. https://doi.org/10.1016/j.ecoenv.2010.01.020

    CAS  Article  Google Scholar 

  118. Singh A, Mehta SK, Gaur JP (2007) Removal of heavy metals from aqueous solution by common freshwater filamentous algae. World J Microbiol Biotechnol 23(8):1115–1120. https://doi.org/10.1007/s11274-006-9341-z

    CAS  Article  Google Scholar 

  119. Singh A, Mishra AK, Singh SS, Sarma HK, Shukla E (2008) Influence of iron and chelator on siderophore production in Frankia strains nodulating Hippophae salicifolia D. Don. J Basic Microbiol 48(2):104–111. https://doi.org/10.1002/jobm.200700262

    CAS  Article  Google Scholar 

  120. Singh J, Upadhyay SK, Pathak RK, Gupta V (2011) Accumulation of heavy metals in soil and paddy crop (Oryza sativa), irrigated with water of Ramgarh Lake, Gorakhpur, UP, India. Toxicol Environ Chem 93(3):462–473. https://doi.org/10.1080/02772248.2010.546559

    CAS  Article  Google Scholar 

  121. Singh M, Garg Vk, Gautam YP, Kumar A (2014) Soil to grain transfer factors of heavy metals in rice and health risk analysis in the vicinity of Narora Atomic Power Station (NAPS), Narora, India. J Sci Res India 73(3):181–186. http://nopr.niscair.res.in/handle/123456789/27381

  122. Singh A, Kaushik MS, Srivastava M, Tiwari DN, Mishra AK (2016) Siderophore mediated attenuation of cadmium toxicity by paddy field cyanobacterium Anabaena oryzae. Algal Res 16:63–68. https://doi.org/10.1016/j.algal.2016.02.030

    Article  Google Scholar 

  123. Sjahrul M, Arifin D (2012) Phytoremediation of Cd2+ by marine phytoplanktons, tetracelmis chuii and Chaetoceros calcitrans. Int J Chem 4:69–74

    CAS  Article  Google Scholar 

  124. Smolders E, McLaughlin MJ (1996) Chloride increases cadmium uptake in Swiss chard in a resin buffered nutrient solution. Soil Sci Soc Am J 60(5):1443–1447. https://doi.org/10.2136/sssaj1996.03615995006000050022x

    CAS  Article  Google Scholar 

  125. Sriprachote A, Kanyawongha P, Ochiai K, Matoh T (2012) Current situation of cadmium polluted paddy soil, rice and soybean in the Mae Sot district, Tak province, Thailand. Soil Sci Plant Nutr 58(3):349–359. https://doi.org/10.1080/00380768.2012.686435

    CAS  Article  Google Scholar 

  126. Su Y-H, McGrath SP, Zhao F-J (2010) Rice is more efficient in arsenite uptake and translocation than wheat and barley. Plant Soil 328:27–34

    CAS  Article  Google Scholar 

  127. Sukreeyapongse O, Holm PE, Strobel BW, Panichsakpatana S, Magid J, Hansen HCB (2002) pH-dependent release of cadmium, copper, and lead from natural and sludge-amended soils. J Environ Qual 31(6):1901–1909. https://doi.org/10.2134/jeq2002.1901

    CAS  Article  Google Scholar 

  128. Sundaramoorthy P, Nagarajan M (2015) Organic soil amendments: potential source for heavy metal accumulation. World Sci News 16:28–39

    Google Scholar 

  129. Thajamanbi M, Rout J, Thajuddin N (2016) Blue green algae from rice fields of Karimganj district, Assam, North East India. Int J Life Sci Pharm Res 6:L25–L34

    Google Scholar 

  130. Tien C-J (2002) Biosorption of metal ions by freshwater algae with different surface characteristics process. Biochemistry 38:605–613

    CAS  Google Scholar 

  131. Tüzün I, Bayramoğlu G, Yalçın E, Başaran G, Celik G, Arıca MY (2005) Equilibrium and kinetic studies on biosorption of Hg (II), Cd (II) and Pb (II) ions onto microalgae Chlamydomonas reinhardtii. J Environ Manag 77(2):85–92. https://doi.org/10.1016/j.jenvman.2005.01.028

    Article  CAS  Google Scholar 

  132. Usman A, Kuzyakov Y, Stahr K (2004) Effect of clay minerals on extractability of heavy metals and sewage sludge mineralization in soil. Chem Ecol 20(2):123–135. https://doi.org/10.1080/02757540410001665971

    CAS  Article  Google Scholar 

  133. Vodyanitskii YN (2010) The role of iron in the fixation of heavy metals and metalloids in soils: a review of publications. Eurasian Soil Sci 43(5):519–532. https://doi.org/10.1134/S1064229310050054

    Article  Google Scholar 

  134. Volesky B (2001) Detoxification of metal bearing effluents: biosorption for the next century. Hydrometallurgy 59(2–3):203–216. https://doi.org/10.1016/S0304-386X(00)00160-2

    CAS  Article  Google Scholar 

  135. Wadhave N (2014) Cyanobacteria algal diversity of Bhadrawati Tahsil paddy soil of Chadrapu district (MS) India. Int J Life Sci (special Issue) A2:112-115

  136. Wang J, Chen C (2006) Biosorption of heavy metals by Saccharomyces cerevisiae: a review. Biotechnol Adv 24(5):427–451. https://doi.org/10.1016/j.biotechadv.2006.03.001

    CAS  Article  Google Scholar 

  137. Wang P, Luo L, Ke L, Luan T, Tam NFY (2013) Combined toxicity of polycyclic aromatic hydrocarbons and heavy metals to biochemical and antioxidant responses of free and immobilized Selenastrum capricornutum. Environ Toxicol Chem 32(3):673–683. https://doi.org/10.1002/etc.2090

    Article  CAS  Google Scholar 

  138. Wang H-Y, Wen S-L, Chen P, Zhang L, Cen K, Sun G-X (2016a) Mitigation of cadmium and arsenic in rice grain by applying different silicon fertilizers in contaminated fields. Environ Sci Pollut Res 23(4):3781–3788. https://doi.org/10.1007/s11356-015-5638-5

    CAS  Article  Google Scholar 

  139. Wang X, Zeng X, Chuanping L, Li F, Xu X, Lv Y (2016b) Heavy metal contaminations in soil rice system: source identification in relation to a sulfur rich coal burning power plant in northern Guangdong Province, China. Environ Monit Assess 188:1–12

    Article  Google Scholar 

  140. Wei B, Yang L (2010) A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China. Microchem J 94(2):99–107. https://doi.org/10.1016/j.microc.2009.09.014

    CAS  Article  Google Scholar 

  141. Williams PN, Villada A, Deacon C, Raab A, Figuerola J, Green AJ, Feldmann J, Meharg AA (2007) Greatly enhanced arsenic shoot assimilation in rice leads to elevated grain levels compared to wheat and barley. Environ Sci Technol 41(19):6854–6859. https://doi.org/10.1021/es070627i

    CAS  Article  Google Scholar 

  142. Winkelmann G (2002) Microbial siderophore-mediated transport. Portland press limited. Biochem Soc Trans 30(4):691–696. https://doi.org/10.1042/bst0300691

    CAS  Article  Google Scholar 

  143. Wu Q, Leung JY, Geng X, Chen S, Huang X, Li H, Huang Z, Zhu L, Chen J, Lu Y (2015) Heavy metal contamination of soil and water in the vicinity of an abandoned e-waste recycling site: implications for dissemination of heavy metals. Sci Total Environ 506:217–225. https://doi.org/10.1016/j.scitotenv.2014.10.121

    Article  CAS  Google Scholar 

  144. Yadav P, Singh B, Garg V, Mor S, Pulhani V (2017) Bioaccumulation and health risks of heavy metals associated with consumption of rice grains from crop lands in northern India. Hum Ecol Risk Assess Int J 23:14–27

    CAS  Article  Google Scholar 

  145. Yamasue Y, Ueki K (1983) Biology of paddy weeds and their control in wetland rice. In: Proceedings of the conference on weed control in rice. p 227–242

  146. Ye W-L, Khan MA, McGrath SP, Zhao F-J (2011) Phytoremediation of arsenic contaminated paddy soils with Pteris vittata markedly reduces arsenic uptake by rice. Environ Pollut 159(12):3739–3743. https://doi.org/10.1016/j.envpol.2011.07.024

    CAS  Article  Google Scholar 

  147. Ye X, Sun B, Yin Y (2012) Variation of As concentration between soil types and rice genotypes and the selection of cultivars for reducing As in the diet. Chemosphere 87(4):384–389. https://doi.org/10.1016/j.chemosphere.2011.12.028

    CAS  Article  Google Scholar 

  148. Ye X, Li H, Ma Y, Wu L, Sun B (2014) The bioaccumulation of Cd in rice grains in paddy soils as affected and predicted by soil properties. J Soils Sediments 14(8):1407–1416. https://doi.org/10.1007/s11368-014-0901-9

    CAS  Article  Google Scholar 

  149. Yin X, Chen J, Qin J, Sun G, Rosen B, Zhu Y (2011) Biotransformation and volatilization of arsenic by three photosynthetic cyanobacteria. Plant Physiol 156(3):1631–1638. https://doi.org/10.1104/pp.111.178947

    CAS  Article  Google Scholar 

  150. Yin X-X, Wang L, Bai R, Huang H, Sun G-X (2012) Accumulation and transformation of arsenic in the blue-green alga Synechocysis sp. PCC6803. Water Air Soil Pollut 223(3):1183–1190. https://doi.org/10.1007/s11270-011-0936-0

    CAS  Article  Google Scholar 

  151. Yong L, Huifeng W, Xiaoting L, Jinchang L (2015) Heavy metal contamination of agricultural soils in Taiyuan, China. Pedosphere 25:901–909

    Article  Google Scholar 

  152. Yu Z, Qiu W, Wang F, Lei M, Wang D, Song Z (2017) Effects of manganese oxide modified biochar composites on arsenic speciation and accumulation in an indica rice (Oryza sativa L.) cultivar. Chemosphere 168:341–349. https://doi.org/10.1016/j.chemosphere.2016.10.069

    CAS  Article  Google Scholar 

  153. Zeng F, Ali S, Zhang H, Ouyang Y, Qiu B, Wu F, Zhang G (2011) The influence of pH and organic matter content in paddy soil on heavy metal availability and their uptake by rice plants. Environ Pollut 159(1):84–91. https://doi.org/10.1016/j.envpol.2010.09.019

    CAS  Article  Google Scholar 

  154. Zenova G, Shtina E, Dedysh S, Glagoleva O, Likhacheva A, Gracheva T (1995) Ecological relations of algae in biocenoses. Microbiology 64:121–133

    Google Scholar 

  155. Zhang Q, Zhou T, Xu X, Guo Y, Zhao Z, Zhu M, Li W, Yi D, Huo X (2011) Downregulation of placental S100P is associated with cadmium exposure in Guiyu, an e-waste recycling town in China. Sci Total Environ 410:53–58. https://doi.org/10.1016/j.scitotenv.2011.09.032

    Article  CAS  Google Scholar 

  156. Zhang C, Ge Y, Yao H, Chen X, Hu M (2012) Iron oxidation reduction and its impacts on cadmium bioavailability in paddy soils: a review. Front Environ Sci Eng 6:509–517

    CAS  Article  Google Scholar 

  157. Zhang S-Y, Zhao F-J, Sun G-X, Su J-Q, Yang X-R, Li H, Zhu Y-G (2015) Diversity and abundance of arsenic biotransformation genes in paddy soils from southern China. Environ Sci Technol 49(7):4138–4146. https://doi.org/10.1021/acs.est.5b00028

    CAS  Article  Google Scholar 

  158. Zhao K, Liu X, Xu J, Selim H (2010) Heavy metal contaminations in a soil rice system: identification of spatial dependence in relation to soil properties of paddy fields. J Hazard Mater 181(1-3):778–787. https://doi.org/10.1016/j.jhazmat.2010.05.081

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the financial support from the National Key Research and Development Program of China (2016YFD0800306, 2017YFD0800305) and National Science Foundation of China (31400450, 41371468, 31770548).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ying Ge.

Additional information

Responsible editor: Kitae Baek

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Naveed, S., Dong, B., Zhang, C. et al. Microalgae and their effects on metal bioavailability in paddy fields. J Soils Sediments 18, 936–945 (2018). https://doi.org/10.1007/s11368-017-1881-3

Download citation

Keywords

  • Bioavailability
  • Heavy metals
  • Microalgae
  • Paddy soils