Banni M, Jebali J, Guerbej H, Dondero F, Boussetta H, Viarengo A (2011) Mixture toxicity assessment of nickel and chlorpyrifos in the sea bass Dicentrarchus labrax. Arch Environ Contam Toxicol 60(1):124–131. https://doi.org/10.1007/s00244-010-9529-y
CAS
Article
Google Scholar
Bradham KD, Dayton EA, Basta NT, Schroder J, Payton M, Lanno RP (2006) Effect of soil properties on lead bioavailability and toxicity to earthworms. Environ Toxicol Chem 25(3):769–775. https://doi.org/10.1897/04-552R.1
CAS
Article
Google Scholar
Brzóska M, Moniuszko-Jakoniuk J (2001) Interactions between cadmium and zinc in the organism. Food Chem Toxicol 39(10):967–980. https://doi.org/10.1016/S0278-6915(01)00048-5
Article
Google Scholar
Button M, Jenkin GR, Harrington CF, Watts MJ (2009) Arsenic biotransformation in earthworms from contaminated soils. J Environ Monit 11(8):1484–1491. https://doi.org/10.1039/b904104d
CAS
Article
Google Scholar
Cáceres T, Megharaj M, Venkateswarlu K, Sethunathan N, Naidu R (2010) Fenamiphos and related organophosphorus pesticides: environmental fate and toxicology. Springer
Cartwright B, Merry R, Tiller K (1977) Heavy metal contamination of soils around a lead smelter at Port Pirie, South Australia. Aust J Soil Res 15(1):69–81. https://doi.org/10.1071/SR9770069
CAS
Article
Google Scholar
Conder JM, Lanno RP (2003) Lethal critical body residues as measures of Cd, Pb, and Zn bioavailability and toxicity in the earthworm Eisenia fetida. J Soils Sediments 3(1):13–20. https://doi.org/10.1007/BF02989463
CAS
Article
Google Scholar
Darling CTR, Thomas VG (2005) Lead bioaccumulation in earthworms, Lumbricus terrestris, from exposure to lead compounds of differing solubility. Sci Total Environ 346(1-3):70–80. https://doi.org/10.1016/j.scitotenv.2004.11.011
CAS
Article
Google Scholar
Duong TTT, Lee B-K (2011) Determining contamination level of heavy metals in road dust from busy traffic areas with different characteristics. J Environ Manag 92(3):554–562. https://doi.org/10.1016/j.jenvman.2010.09.010
CAS
Article
Google Scholar
Ernst G, Zimmermann S, Christie P, Frey B (2008) Mercury, cadmium and lead concentrations in different ecophysiological groups of earthworms in forest soils. Environ Pollut 156(3):1304–1313. https://doi.org/10.1016/j.envpol.2008.03.002
CAS
Article
Google Scholar
Kim K, Owens G, Naidu R (2009) Heavy metal distribution, bioaccessibility, and phytoavailability in long-term contaminated soils from Lake Macquarie, Australia. Aust J Soil Res 47(2):166–176. https://doi.org/10.1071/SR08054
CAS
Article
Google Scholar
Kojima Y, Kägi JH (1978) Metallothionein. Trends Biochem Sci 3(2):90–93. https://doi.org/10.1016/S0968-0004(78)80006-1
CAS
Article
Google Scholar
Lokke H, Gestel CAM (1998) Handbook of soil invertebrate toxicity tests. Ecological & environmental toxicology series. John Wiley and Sons Ltd Chichester (United Kingdom), pp 281–285
Morgan A, Morris B (1982) The accumulation and intracellular compartmentation of cadmium, lead, zinc and calcium in two earthworm species (Dendrobaena rubida and Lumbricus rubellus) living in highly contaminated soil. Histochemistry 75(2):269–285. https://doi.org/10.1007/BF00496017
CAS
Article
Google Scholar
Nederlof M, Van Riemsdijk W, De Haan F 1993 Effect of pH on the bioavailability of metals in soils. Integrated sSoil and sSediment rResearch: aA bBasis for pProper pProtection. Springer, pp 215– 219
Pelfrene A, Waterlot C, Mazzuca M, Nisse C, Bidar G, Douay F (2011) Assessing Cd, Pb, Zn human bioaccessibility in smelter-contaminated agricultural topsoils (northern France). Environ Geochem Health 33(5):477–493. https://doi.org/10.1007/s10653-010-9365-z
CAS
Article
Google Scholar
Qiu H, Vijver MG, Peijnenburg WJ (2011) Interactions of cadmium and zinc impact their toxicity to the earthworm Aporrectodea caliginosa. Environ Toxicol Chem 30(9):2084–2093. https://doi.org/10.1002/etc.595
CAS
Article
Google Scholar
Sheng PX, Ting Y-P, Chen JP, Hong L (2004) Sorption of lead, copper, cadmium, zinc, and nickel by marine algal biomass: characterization of biosorptive capacity and investigation of mechanisms. J Colloid Interf Sci 275(1):131–141. https://doi.org/10.1016/j.jcis.2004.01.036
CAS
Article
Google Scholar
Stephenson G, Kaushik A, Kaushik N, Solomon K, Steele T, Scroggins R (1998) Use of an avoidance-response test to assess the toxicity of contaminated soils to earthworms. Advances in earthworm ecotoxicology. SETAC, Pensacola, FL, USA, pp 67–81
van der Geest HG, Greve GD, Boivin ME, Kraak MH, van Gestel CA (2000) Mixture toxicity of copper and diazinon to larvae of the mayfly (Ephoron virgo) judging additivity at different effect levels. Environ Toxicol Chem 19(12):2900–2905. https://doi.org/10.1002/etc.5620191208
Article
Google Scholar
Weltje L (1998) Mixture toxicity and tissue interactions of Cd, Cu, Pb and Zn in earthworms (Oligochaeta) in laboratory and field soils: a critical evaluation of data. Chemosphere 36(12):2643–2660. https://doi.org/10.1016/S0045-6535(97)10228-4
CAS
Article
Google Scholar
Wijayawardena MA, Megharaj M, Naidu R (2017) Bioaccumulation and toxicity of lead, influenced by edaphic factors: using earthworms to study the effect of Pb on ecological health. J Soils Sediments 17(4):1064–1072. https://doi.org/10.1007/s11368-016-1605-0
CAS
Article
Google Scholar
Wu B, LiuZ XY, Li D, Li M (2012) Combined toxicity of cadmium and lead on the earthworm Eisenia fetida (Annelida, Oligochaeta). Ecotoxicol Environ Saf 81:122–126. https://doi.org/10.1016/j.ecoenv.2012.05.003
CAS
Article
Google Scholar
Xian X, Shokohifard GI (1989) Effect of pH on chemical forms and plant availability of cadmium, zinc, and lead in polluted soils. Water Air Soil Pollut 45:265–273
CAS
Article
Google Scholar