Skip to main content
Log in

Assessment of the adaptive capacity of plant species in copper mine tailings in arid and semiarid environments

  • Reclamation and Management of Polluted Soils: Options and Case Studies
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

The objective of this work was to identify hyperaccumulator plants and evaluate their capacity on copper mine tailings in the Antofagasta Region (Chile), considered one of the most arid in the world.

Materials and methods

Two native plant species, Gazania rigens and Pelargonium hortorum, were grown during 11 weeks on mine tailings. The physico-chemical characterization of the mine tailings under study indicated that the substrate required conditioning to support a phytoremediation system. In this respect, organic and inorganic amendments and mycorrizhal fungi were added to the substrate. Three treatments were designed to assess the effects of the amendments through an analysis of variance.

Results and discussion

Indicators of plant growth and development were measured weekly, and concentrations of Cd, Cu, Fe, Mn, Pb, Al, and Zn in roots of tailing-grown plants and substrate were measured at the end of the experiment.

Conclusions

The results were used to determine the bioconcentration factor (BCF), which demonstrated that both species act as excluders of Fe, Mn, Pb, Al, and Zn. In addition, it was found that both species present characteristics of potential accumulators of Cu.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • AENOR (2001a) Norma UNE-EN 13039. Determinación del contenido en material orgánica y de cenizas. Asociación Española de Normalización y Certificación (AENOR), Madrid, España

  • AENOR (2001b) Norma UNE-EN 13041. Determinación de las propiedades físicas. Asociación Española de Normalización y Certificación (AENOR), Madrid, España

  • AENOR (2002) Norma UNE-EN 13650. In: Extracción de elementos solubles en agua regia. Certificación (AENOR), Madrid, España, Asociación Española de Normalización y

    Google Scholar 

  • Afzal M, Khan QM, Sessitsch A (2014) Endophytic bacteria: prospects and applications for the phytoremediation of organic pollutants. Chemosphere 117:232–242

    Article  CAS  Google Scholar 

  • Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals—concepts and applications. Chemosphere 91:869–881

    Article  CAS  Google Scholar 

  • Alizadeh S, Zahedi-Amiri G, Savaghebi-Firoozabadi G, Etemad V, Shirvany A, Shirmardi M (2012) Assisted phytoremediation of Cd-contaminated soil using poplar rooted cuttings. Int Agrophys 26(3):219–224

    Article  CAS  Google Scholar 

  • Azlan K, Norjan Y, Che Fauziah I, Esther P, Galuh Y (2014) The effects of micro-and nanohydroxyapatite application in metal contaminated soil on metal acccumulation in Ipomoea aquatica and soil metal bioavailability. In: Proceeding of International Conference on Research, Implementation and Education of Mathematics and Sciences

  • Baker AJ (1981) Accumulators and excluders strategies in the response of plants to heavy metals. J Plant Nutr 3(1–4):643–654

    Article  CAS  Google Scholar 

  • Basta NF, Tabatabai M (1985) Determination of exchangeable bases in soils by ion chromatography. Soil Sci Soc Am J 49:84–89

    Article  CAS  Google Scholar 

  • Bates D, Maechler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67(1):1–48

    Article  Google Scholar 

  • Bell FG, Donnelly LJ (2006) Mining and its impact on the environment. CRC Press

  • Bingham FT (1982) Boron. In: Page AL (ed) Methods of soil analysis. Part 2: chemical and microbiological properties, 2nd edn. American Society of Agronomy, WI, pp 431–448

    Google Scholar 

  • Blakemore LC, Searle PL, Daly BK (1972) Methods for chemical analysis of soils. New Zealand, NZ DSIR (NZ Soil Bureau Scientific Report 10 A, p A9.1)

  • Briggs PH (1996) Forty elements by inductively coupled plasma-atomic emission spectrometry. In: Arbogast BF (edn) Analytical methods manual for the Mineral Resource Surveys Program, U.S. Geological Survey: U.S. Geological Survey Open-File Report 96-525, pp 77–94

  • Casierra F, Aguilar O (2007) Estrés por aluminio en plantas: reacciones en el suelo, síntomas en vegetales y posibilidades de corrección. Una revisión Revista Colombiana de Ciencias Hortícolas 1(2):246–257

    Google Scholar 

  • Castillo-Rodríguez F (2005) Biotecnología ambiental (No. 660.6 B616b). Madrid, Spain: Edit. Tébar

  • Cavieres LA, Arroyo MT, Posadas P et al (2002) Identification of priority areas for conservation in an arid zone: application of parsimony analysis of endemicity in the vascular flora of the Antofagasta region, northern Chile. Biodivers Conserv 11(7):1301–1311

    Article  Google Scholar 

  • Clemente R, Dickinson NM, Lepp NW (2008) Mobility of metals and metalloids in a multi-element contaminated soil 20 years after cessation of the pollution source activity. Environ Pollut 155:254–261

    Article  CAS  Google Scholar 

  • Cullis PR, Kruijff B (1979) Lipid polymorphism and the functional role of lipids in biological membrane. Bioch Biophys Acta 559:339–420

    Google Scholar 

  • Dahlquist RL, Knoll JW (1978) Inductively coupled plasma-atomic emission spectrometry: analysis of biological materials and soils for major trace, and ultra-trace elements. Appl Spectroscopy 32:1-30. ICP: ARL (Fisons) model 3560 ICP-AES

  • De la Iglesia R, Castro D, Ginocchio van der Lelie D, González B (2006) Factors influencing the composition of bacterial communities found at abandoned copper-tailings dumps. J Appl Microbiol 100:537–544

    Article  Google Scholar 

  • Doni S, Macci C, Peruzzi E, Iannelli R, Masciandaro G (2015) Heavy metal distribution in a sediment phytoremediation system at pilot scale. Ecol Eng 81:146–157

    Article  Google Scholar 

  • Fassel VA, Kniseley RN (1974) Inductively coupled plasma optical emission spectroscopy. Anal Chem 46(13):1110A–1120A

    Article  CAS  Google Scholar 

  • Fellet G, Marchiol L, Perosa D, Zerbi G (2007) The application of phytoremediation technology in a soil contaminated by pyrite cinders. Ecol Eng 3(I):207–214

    Article  Google Scholar 

  • Ghorbani Y, Kuan SH (2016) A review of sustainable development in the Chilean mining sector: past, present and future. Int J Min Reclam Environ 30:1–29

    Article  Google Scholar 

  • Gomes PI, Asaeda T (2013) Phytoremediation of heavy metals by calcifying macro-algae (Nitella pseudoflabellata): implications of redox insensitive end products. Chemosphere 92(10):1328–1334

    Article  CAS  Google Scholar 

  • Green DE, Fry M, Blonding GA (1980) Phospholipids as molecular carriers of ion and solute transport in biological membranes. Proc Nat Acad Sci USA 77:257–261

    Article  CAS  Google Scholar 

  • Gunsé B, Poschenrieder C, Barceló J (1997) Water transport properties of roots and cortical cells in proton and aluminium stressed maize varieties. Plant Physiol 113:595–602

    Article  Google Scholar 

  • Hartley W, Edwards R, Lepp NW (2004) Arsenic and heavy metal mobility in iron oxide amended contaminated soils as evaluated by short- and long- term leaching tests. Environ Pollut 131:495–504

    Article  CAS  Google Scholar 

  • Haug A, Foy CE (1984) Molecular aspects of aluminum toxicity. Crit Rev Plant Sci 1(4):345–373

    Article  CAS  Google Scholar 

  • Hirzel J (2010) Uso de enmiendas orgánicas en frutales de hoja caduca: consideraciones técnicas y dosificaciones. Copefrut 2:42–48

    Google Scholar 

  • Horst WJ (1995) The role of the apoplast in aluminium toxicity and resistance of higher plants: a review. Z Pflanzenernähr Bodenkd 158:419–428

    Article  CAS  Google Scholar 

  • Jones Jr JB (2001) Laboratory guide for conducting soil tests and plant analysis. CRC press

  • Kamari A, Pulford ID, Hargreaves JSJ (2012) Metal accumulation in Lolium perenne and Brassica napus as affected by application of chitosans. Int J Phytoremediat 14(9):894–907

    Article  CAS  Google Scholar 

  • Kamari A, Yusoff SNM, Putra WP, Ishak CF, Hashim N, Mohamed A, Phillip E (2014) Metal uptake in water spinach grown on contaminated soil amended with chicken manure and coconut tree sawdust. Environ Eng Manag J 13(9):2219–2228

    CAS  Google Scholar 

  • Klimashevskii EL, Dedov VM (1980) Characteristics of an elastic cell wall of the root in relation to genotypic variance of plant resistance to aluminium ions. Isv Sib Atb Akad Nauk SSSR Ser Biol Nauk 1:108-112; Chem Abstr 93:142–143

  • Kossoff D, Dubbin WE, Alfredsson M, Edwards SJ, Macklin MG, Hudson-Edwards KA (2014) Mine tailings dams: characteristics, failure, environmental impacts, and remediation. Appl Geochem 51:229–245

    Article  CAS  Google Scholar 

  • Krueger C, Tian L (2004) A comparison of the general linear mixed model and repeated measures ANOVA using a dataset with multiple missing data points. Biol Res Nurs 6(2):151–157

    Article  Google Scholar 

  • Kulkarni DK, Delbari AS, Mahajan DM (2014) Bio concentration factor (BCF) for heavy metals detection and selection of hyper-accumulator plants. Case study of Pune-India and Tehran–Iran. Ind J Fund Appl Life Sci 4(1):163–170

    Google Scholar 

  • Kuznetsova A, Brockhoff PB, Christensen RHB (2015) Package ‘lmerTest’. R package version, 2–0

  • Lam EJ, Gálvez ME, Cánovas M, Montofré IL, Rivero D, Faz A (2016) Evaluation of metal mobility from copper mine tailings in northern Chile. Environ Sci Pollut Res 23(12):11901–11915

    Article  CAS  Google Scholar 

  • Lim HS, Lee JS, Chon HT, Sager M (2008) Heavy metal contamination and health risk assessment in the vicinity of the abandoned Songcheon Au–Ag mine in Korea. J Geochem Explor 96(2):223–230

    Article  CAS  Google Scholar 

  • Lindsay WL, Norvell WA (1978) Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Sci Soc Am J 42(3):421–428

    Article  CAS  Google Scholar 

  • Marchiol L, Fellet G, Perosa D, Zerbi G (2007) Removal of trace metals by Sorghum bicolor and Helianthus annuus in a site polluted by industrial wastes: a field experience. Plant Physiol Bioch 45:379–387

    Article  CAS  Google Scholar 

  • Martínez-Fernández D, Walker DJ (2012) The effects of soil amendments on the growth of Atriplex halimus and Bituminaria bituminosa in heavy metal-contaminated soils. Water Air Soil Poll 223(1):63–72

    Article  Google Scholar 

  • Máthé-Gáspár G, Anton A (2005) Study of phytoremediation by use of willow and rape. Acta Biol Szeged 49(1–2):73–74

    Google Scholar 

  • McIntyre T (2003) Phytoremediation of heavy metals from soils. Adv Biochem Eng Biotechnol 78:97–123

  • Meeinkuirt W, Pokethitiyook P, Kruatrachue M, Tanhan P, Chaiyarat R (2012) Phytostabilization of a Pb-contaminated mine tailing by various tree species in pot and field trial experiments. Int J Phytoremediat 14(9):925–938

    Article  Google Scholar 

  • Mendez MO, Maier RM (2008) Phytostabilization of mine tailings in arid and semiarid environments-an emerging remediation technology. Environ Health Persp 116(3):278

    Article  CAS  Google Scholar 

  • Mkumbo S, Mwegoha W, Renman G (2012) Assessment of the phytoremediation potential for Pb, Zn and Cu of indigenous plants growing in a gold mining area in Tanzania. Int J Ecol Environ Sci 2(4):2425–2434

    CAS  Google Scholar 

  • Nieto KF, Frankenberger WT (1985a) Single ion chromatography. I. Analysis of inorganic anions in soils. Soil Sci Soc Am J 49:587–592

    Article  CAS  Google Scholar 

  • Nieto KF, Frankenberger WT (1985b) Single ion chromatography. II. Analysis of ammonium, alkali metals, and alkaline earth cations in soils. Soil Sci Soc Am J 49:592–596

    Article  CAS  Google Scholar 

  • Novo LA, Covelo EF, González L (2013) The potential of Salvia verbenaca for phytoremediation of copper mine tailings amended with technosol and compost. Water Air Soil Pollut 224(4):1–9

    Article  Google Scholar 

  • Padmavathiamma PK, Li LY (2007) Phytoremediation technology: hyper-accumulation metals in plants. Water Air Soil Polltu 184(1–4):105–126

    Article  CAS  Google Scholar 

  • Pinto G, Pollio A, Previtera L, Temussi F (2002) Biodegradation of phenols by microalgae. Biotechnol Lett 24(24):2047–2051

    Article  CAS  Google Scholar 

  • R Core Team (2016). R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/

  • Rafati M, Khorasani N, Moattar F, Shirvany A, Moraghebi F, Hosseinzadeh S (2011) Phytoremediation potential of Populus alba and Morus alba for cadmium, chromuim and nickel absorption from polluted soil. Int J Environ Res 5(4):961–970

    CAS  Google Scholar 

  • Rahimi B, Manavi PN (2010) Availability, accumulation and elimination of cadmium by Artemia urmiana in different salinities. J Biol Environ Sci 4(12)

  • Rezvani M, Zaefarian F (2011) Bioaccumulation and translocation factors of cadmium and lead in ‘Aeluropus littoralis’. Aust J Agric Eng 2(4):114

    Google Scholar 

  • Rhoades JD, Manteghi NA, Shouse PJ, Alves WJ (1989) Estimating soil salinity from saturated soil-paste electrical conductivity. Soil Sci Soc Am J 53:428–433

    Article  Google Scholar 

  • Robinson B, Schulin R, Nowack B et al (2006) Phytoremediation for the management of metal flux in contaminated sites. For Snow Landsc Res 80(2):221–224

    Google Scholar 

  • Ryan J, Estefan G, Rashid A (2001) Soil and plant analysis laboratory manual. Interaction Center for Agricultural Research in the Dry Areas (ICARDA), Aleppo, Syria

  • Sadzawka A, Carrasco M, Grez R, Mora M (2005) Métodos de análisis de compost. Centro Regional de Investigación La Platina, Serie No34, Santiago, Chile

  • Sadzawka, A., Carrasco, M., Demanet, R., Flores, H., Grez, R., Mora, M. L., & Neaman, A. (2007). Métodos de análisis de tejidos vegetales. Serie Actas INIA 40:140

  • Salomons W (1995) Environmental impact of metals derived from mining activities: processes, predictions, prevention. J Geochem Explor 52(1):5–23

    Article  CAS  Google Scholar 

  • Sağlam ES, Akçay M (2016) Chemical and mineralogical changes of waste and tailings from the Murgul Cu deposit (Artvin, NE Turkey): implications for occurrence of acid mine drainage. Environ Sci Pollut R 23(7):6584–6607

    Article  Google Scholar 

  • Salt DE, Blaylock M, Kumar NP, Dushenkov V, Ensley BD, Chet I, Raskin I (1995) Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Nat Biotechnol 13(5):468–474

    Article  CAS  Google Scholar 

  • Sánchez-López AS, González-Chávez MDCA, Carrillo-González R, Vangronsveld J, Díaz-Garduño M (2015) Wild flora of mine tailings: perspectives for use in phytoremediation of potentially toxic elements in a semi-arid region in Mexico. Int J Phytoremediat 17(5):476–484

    Article  Google Scholar 

  • Sims DB, Hooda PS, Gillmore GK (2013) Mining activities and associated environmental impacts in arid climates: a literature review. Environ Pollut 2(4):22

    Article  CAS  Google Scholar 

  • Sobek AA, Schuller WA, Freeman JR, Smith RM (1978) Field and laboratory methods applicable to overburdens and minesoil. Coll. of Agriculture and Forestry. West Virginia Univ, Morgantown

    Google Scholar 

  • Tangahu BV, Sheikh Abdullah SR, Basri H, Idris M, Anuar N, Mukhlisin M (2011) A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. Int J Chem Eng 2011

  • Tangboriboon N, Kunanuruksapong R, Sirivat A (2012) Preparation and properties of calcium oxide from eggshells via calcination. Mater Sci-Poland 30(4):313–322

    Article  CAS  Google Scholar 

  • Watson ME (1998) Boron: recommended chemical soil test procedures for the north central region. Research Publication No. 221. Mo Agri Exp Stat SB 1001:45–48

    Google Scholar 

  • Westerman RL (1990) Soil testing and plant analysis. Soil Science of America Book Series 3rd Edition

  • Weyens N, Van Der Lelie D, Taghavi S, Vangronsveld J (2013) The poplar endophyte Pseudomonas putida W619 as a key to a successful phytoremediation of volatile organic contaminants. In: Molecular Microbial Ecology of the RhizosphereWiley, Volume 1 & 2:429-435

  • Wuana RA, Okieimen FE (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. Isrn Ecol 2011

  • Yang S, Liang S, Yi L, Xu B, Cao J, Guo Y, Zhou Y (2014) Heavy metal accumulation and phytostabilization potential of dominant plant species growing on manganese mine tailings. Front Env Sci Eng 8(3):394–404

    Article  CAS  Google Scholar 

  • Yoon J, Cao X, Zhou Q, Ma LQ (2006) Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Sci Total Environ 368(2):456–464

    Article  CAS  Google Scholar 

  • Zacchini M, Pietrini F, Mugnozza GS, Iori V, Pietrosanti L, Massacci A (2009) Metal tolerance, accumulation and translocation in poplar and willow clones treated with cadmium in hydroponics. Water Air Soil Pollut 197(1–4):23–34

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was conducted in the framework of a CORFO-INNOVA project (08CM01-05), titled “Integrated development of magneto-chemical technologies and phytotechnologies applied to the remediation of heavy metals in the development of mining environmental liabilities.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth J. Lam.

Additional information

Responsible editor: Jaume Bech

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lam, E.J., Gálvez, M.E., Cánovas, M. et al. Assessment of the adaptive capacity of plant species in copper mine tailings in arid and semiarid environments. J Soils Sediments 18, 2203–2216 (2018). https://doi.org/10.1007/s11368-017-1835-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-017-1835-9

Keywords

Navigation