• Soils, Sec 3 • Remediation and Management of Contaminated or Degraded Lands • Review Article
  • Published:

Thermodynamic energy of anaerobic microbial redox reactions couples elemental biogeochemical cycles

Abstract

Purpose

The thermodynamic energy of redox reactions affects the distribution of microbial redox reactions and cyclic transformation of elements in various anaerobic ecosystems. The principle of thermodynamics is of dramatic significance in understanding the energetics of metabolic processes, the biogeochemical behavior of microorganisms, and mass and energy cycles. The purpose of this paper is to relate the distribution of the coupling reactions between C, N, Fe, and S, the most important elements involved in microbially mediated redox reactions, with their thermodynamic feasibility to provide theoretical foundation of their occurrence.

Results and discussion

Anaerobic microorganisms catalyze diverse redox reactions in anoxic environments, driving elemental biogeochemical cycles on the earth. They capture energy from catalyzing these redox reactions in order to support life. The thermodynamic feasibility of these microbe-driven redox reactions is controlled by their energy yields which depend on environmental conditions. Anaerobic microorganisms can oxidize organic carbon with diverse inorganic compounds including nitrate/nitrite, ferric iron, and sulfate as electron acceptors in various anoxic environments which is referred to anaerobic respiration of organic matter; reversely, inorganic carbon can be reduced to synthesize cell material with ferrous iron and sulfide as an alternative electron donor by phototrophs under different sets of circumstances. Nitrate/nitrate can be microbically reduced by inorganic compounds such as ferrous iron and sulfide under some specific situations; the coupling of anaerobic anammox oxidation and reduction of nitrite (anammox), ferric iron (feammox), and sulfate (suramox) driven by anaerobes occurs in other particular systems.

Conclusions and perspectives

Although there are increasing researches investigating the anaerobe-driven coupling of pairs of elements such as C-N, C-Fe, C-S, N-Fe, N-S, and Fe-S, much more intricate situations associating the coupling of multiple elements are still not comprehensively understood. A great many reactions which are thermodynamically feasible have not yet been identified in natural environments or laboratories. Further work focusing on the metabolic pathways from a genetic and enzymatic perspective and the factors controlling the feasibility of the reactions by using updated technical tools and methods is required.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Aeschbacher M, Vergari D, Schwarzenbach RP, Sander M (2011) Electrochemical analysis of proton and electron transfer equilibria of the reducible moieties in humic acids. Environ Sci Technol 45:8385–8394

    CAS  Article  Google Scholar 

  2. Aiken GR, Mcknight DM, Wershaw RL, Maccarthy P (1985) Humic substances in soil, sediment, and water: geochemistry, isolation, and characterization. John Wiley & Sons, New York

    Google Scholar 

  3. Amend JP, Shock EL (2001) Energetics of overall metabolic reactions of thermophilic and hyperthermophilic archaea and bacteria. FEMS Microbiol Rev 25:175–243

    CAS  Article  Google Scholar 

  4. Aranda-Tamaura C, Estrada-Alvarado MI, Texier AC, Cuervo F, Gómez J, Cervantes FJ (2007) Effects of different quinoid redox mediators on the removal of sulphide and nitrate via denitrification. Chemosphere 69:1722–1727

    CAS  Article  Google Scholar 

  5. Balci S, Dincel Y (2002) Ammonium ion absorption with sepolite: use of transient uptake method. Chem Eng Process 41:70–85

    Article  Google Scholar 

  6. Beal EJ, House CH, Orphan VJ (2009) Manganese- and iron-dependent marine methane oxidation. Science 325:184–187

    CAS  Article  Google Scholar 

  7. Bender M, Jahnke R, Ray W, Martin W, Heggie DT, Orchardo J, Sowers T (1989) Organic carbon oxidation and benthic nitrogen and silica dynamics in San Clemente Basin, a continental borderland site. Geochim Cosmochim Acta 53:685–697

    CAS  Article  Google Scholar 

  8. Benz M, Brune A, Schink B (1998) Anaerobic and aerobic oxidation of ferrous iron at neutral pH by chemoheterotrophic nitrate-reducing bacteria. Arch Microbiol 169:159–165

    CAS  Article  Google Scholar 

  9. Bethke CM, Sanford RA, Kirk MF, Jin Q, Flynn TM (2011) The thermodynamic ladder in geomicrobiology. Am J Sci 311:183–210

    CAS  Article  Google Scholar 

  10. Blankenship RE, Madigan MT, Bauer CE (eds) (1995) Anoxygenic photosynthetic bacteria. Kluwer, Dordrecht

    Google Scholar 

  11. Blöthe M, Roden EE (2009) Composition and activity of an autotrophic Fe(II)-oxidizing, nitrate-reducing enrichment culture. Appl Environ Microbiol 75:6937–6940

    Article  CAS  Google Scholar 

  12. Boesen C, Postma D (1988) Pyrite formation in anoxic environments of the Baltic. Amer J Sci 288:575–603

    CAS  Article  Google Scholar 

  13. Bond DR, Lovley DR (2002) Reduction of Fe(III) oxide by methanogens in the presence and absence of extracellular quinones. Environ Microbiol 4:115–124

    CAS  Article  Google Scholar 

  14. Burgin AJ, Hamilton SK (2008) NO3 -driven SO4 2− production in freshwater ecosystems: implications for N and S cycling. Ecosystems 11:908–922

    CAS  Article  Google Scholar 

  15. Burgin AJ, Yang WH, Hamilton SK, Silver WL (2011) Beyond carbon and nitrogen: how the microbial energy economy couples elemental cycles in diverse ecosystems. Front Ecol Environ 9:44–52

    Article  Google Scholar 

  16. Cai J, Jiang JX, Zheng P (2010) Isolation and identification of bacteria responsible for simultaneous anaerobic ammonium and sulfate removal. Sci China Chem 53:645–665

    CAS  Article  Google Scholar 

  17. Canfield DE, Raiswell R (1999) The evolution of the sulfur cycle. Am J Sci 299:697–723

    CAS  Article  Google Scholar 

  18. Canfield DE, Jørgensen BB, Fossing H, Glud R, Gundersen J, Ramsing NB, Thamdrup B, Hansen JW, Nielsen LP, Hall PO (1993) Pathways of organic carbon oxidation in three continental margin sediments. Mar Geol 113:7–40

  19. Canfield DE, Rosing MT, Bjerrum C (2006) Early anaerobic metabolisms. Philos Trans R Soc Lond Ser B Biol Sci 361:1819–1834

    CAS  Article  Google Scholar 

  20. Chakraborty A, Roden EE, Schieber J, Picardal F (2011) Enhanced growth of Acidovorax sp. strain 2AN during nitrate-dependent Fe(II) oxidation in batch and continuous-flow systems. Appl Environ Microbiol 77:8548–8556

    CAS  Article  Google Scholar 

  21. Chaudhuri SK, Lack JG, Coates JD (2001) Biogenic magnetite formation through anaerobic biooxidation of Fe(II). Appl Environ Microbiol 67:2844–2848

    CAS  Article  Google Scholar 

  22. Clément JC, Shrestha J, Ehrenfeld JG, Jaffé PR (2005) Ammonium oxidation coupled to dissimilatory reduction of iron under anaerobic conditions in wetland soils. Soil Biol Biochem 37:2323–2328

    Article  CAS  Google Scholar 

  23. Conrad R, Schink B, Phelps TJ (1986) Thermodynamics of H2-consuming and H2-producing metabolic reactions in diverse methanogenic environments under in situ conditions. FEMS Microbiol Ecol 38:353–360

    CAS  Article  Google Scholar 

  24. Crowe SA, Jones C, Katsev S, Magen C, O'Neill AH, Sturm A, Canfield DE, Haffner GD, Mucci A, Sundby B, Fowle DA (2008) Photoferrotrophs thrive in an Archean Ocean analogue. Proc Natl Acad Sci U S A 105:15938–15943

    CAS  Article  Google Scholar 

  25. Dale OR, Tobias CR, Bongkeun S (2009) Biogeographical distribution of diverse anaerobic ammonium oxidizing (anammox) bacteria in Cape Fear River Estuary. Environ Microbiol 11:1194–1207

    CAS  Article  Google Scholar 

  26. Dalsgaard T, Canfield DE, Petersen J, Thamdrup B, Acuna-Gonzalez J (2003) N2 production by the anammox reaction in the anoxic water column of Golfo Dulce, Costa Rica. Nature 422:606–608

    CAS  Article  Google Scholar 

  27. Dalsgaard T, Thamdrup B (2002) Factors controlling anaerobic ammonium oxidation with nitrite in marine sediments. Appl Environ Microbiol 68:3802–3808

    CAS  Article  Google Scholar 

  28. Ding LJ, An XL, Li S, Zhang GL, Zhu YG (2014) Nitrogen loss through anaerobic ammonium oxidation coupled to iron reduction from paddy soils in a chronosequence. Environ Sci Technol 48:10641–10647

    CAS  Article  Google Scholar 

  29. Ehrenreich A, Widdel F (1994) Anaerobic oxidation of ferrous iron by purple bacteria, a new type of phototrophic metabolism. Appl Environ Microbiol 60:4517–4526

    CAS  Google Scholar 

  30. Engstrom P, Penton CR, Devola AH (2009) Anaerobic ammonium oxidation in deep-sea sediments off the Washington margin. Limnol Oceanogr 54:1643–1652

    Article  Google Scholar 

  31. Ettwig KF, Butler MK, Le Paslier D, Pelletier E, Mangenot S, Kuypers MM, Schreiber F, Dutilh BE, Zedelius J, de Beer D, Gloerich J, Wessels HJ, van Alen T, Luesken F, Wu ML, van de Pas-Schoonen KT, Op den Camp HJ, Janssen-Megens EM, Francoijs KJ, Stunnenberg H, Weissenbach J, Jetten MS, Strous M (2010) Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 464:543–548

    CAS  Article  Google Scholar 

  32. Fdz-Polanco F, Fdz-Polanco M, Fernandez N, Uruena MA, Garcia PA, Villaverde S (2001) New process for simultaneous removal of nitrogen and sulfur under anaerobic conditions. Water Res 35:1111–1114

    CAS  Article  Google Scholar 

  33. Flynn TM, O’Loughlin EJ, Mishra B, DiChristina TJ, Kemner KM (2014) Sulfur-mediated electron shuttling during bacterial iron reduction. Science 344:1039–1042

    CAS  Article  Google Scholar 

  34. Fossing H, Gallardo VA, Jørgensen BB, Huttel M, Nielsen LP, Schlz H, Canfield DE, Forster S, Glud RN, Gyndersen JK, Kuver J, Ramsing NB, Teske A, Thamdrup B, Ulloa O (1995) Concentration and transport of nitrate by the mat-forming sulphur bacterium Thioploca. Nature 374:713–715

    CAS  Article  Google Scholar 

  35. Froelich PN, Klinkhammer GP, Bender ML, Luedtke NA, Heath GR, Cullen D, Dauphin P, Hammond D, Hartman B, Maynard V (1979) Early oxidation of organic-matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis. Geochim Cosmochim Acta 43:1075–1090

    CAS  Article  Google Scholar 

  36. Hamersley MR, Woebken D, Boehrer B, Schultze M, Lavik G, Kuypers MM (2009) Water column anammox and denitrification in a temperate permanently stratified lake (Lake Rassnitzer, Germany). System Appl Microbiol 32:571–582

    CAS  Article  Google Scholar 

  37. Hansen HCB, Koch CB, Nancke-Krogh H, Borggaard OK, Sørensen J (1996) Abiotic nitrate reduction to ammonium: key role of green rust. Environ Sci Technol 30:2053–2056

    CAS  Article  Google Scholar 

  38. Haroon MF, Hu S, Shi Y, Imelfort M, Keller J, Hugenholtz P, Yuan ZG, Tyson GW (2013) Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature 500:567–570

    CAS  Article  Google Scholar 

  39. Hoehler TM, Alperin MJ, Albert DB, Martens CS (1994) Field and laboratory studies of methane oxidation in an anoxic marine sediment: evidence for a methanogen-sulfate reducer consortium. Glob Biogeochem Cycles 8:451–463

    CAS  Article  Google Scholar 

  40. Huang DY, Zhuang L, Cao WD, Xu W, Zhou SG, Li FB (2010) Comparison of dissolved organic matter from sewage sludge and sludge compost as electron shuttles for enhancing Fe(III) bioreduction. J Soils Sediments 10:722–729

    CAS  Article  Google Scholar 

  41. Huang XL, Gao DW, Peng S, Tao Y (2014) Effects of ferrous and manganese ions on anammox process in sequencing batch biofilm reactors. J Environ Sci 26:1034–1039

    CAS  Article  Google Scholar 

  42. Jackson BE, McInerney MJ (2002) Anaerobic microbial metabolism can proceed close to thermodynamic limits. Nature 415:454–456

    CAS  Article  Google Scholar 

  43. Jaeschke A, den Camp HJO, Harhangi H, Klimiuk A, Hopmans EC, Jetten MS, Schouten S, Sinninghe Damste JS (2009a) 16S rRNA gene and lipid biomarker evidence for anaerobic ammonium-oxidizing bacteria (anammox) in California and Nevada hot springs. FEMS Microbiol Ecol 67:343–350

    CAS  Article  Google Scholar 

  44. Jaeschke A, Hopmans EC, Wakeham SG, Schouten S, Damste JS (2007) The presence of ladderane lipids in the oxygen minimum zone of the Arabian Sea indicates nitrogen loss through anammox. Limnol Oceanogr 52:780–786

    CAS  Article  Google Scholar 

  45. Jaeschke A, Rooks C, Trimmer M, Nicholls JC, Hopmans EC, Schouten S, Damsté JSS (2009b) Comparison of ladderane phospholipid and core lipids as indicators for anaerobic ammonium oxidation (anammox) in marine sediments. Geochim Cosmochim Acta 73:2077–2088

    CAS  Article  Google Scholar 

  46. Jin Q, Bethke CM (2003) A new rate law describing microbial respiration. Appl Environ Microbiol 69:2340–2348

    CAS  Article  Google Scholar 

  47. Jin Q, Bethke CM (2007) The thermodynamics and kinetics of microbial metabolism. Amer J Sci 307:643–677

    CAS  Article  Google Scholar 

  48. Jin Q, Bethke CM (2009) Cellular energy conservation and the rate of microbial sulfate reduction. Geology 37:1027–1030

    CAS  Article  Google Scholar 

  49. Kappler A, Newman DK (2004) Formation of Fe(III)-minerals by Fe(II)-oxidizing photoautotrophic bacteria. Geochim Cosmochim Acta 68:1217–1226

    CAS  Article  Google Scholar 

  50. Kasting JF (1993) Earth’s early atmosphere. Science 259:920–926

    CAS  Article  Google Scholar 

  51. Klüpfel L, Piepenbrock A, Kappler A, Sander M (2014) Humic substances as fully regenerable electron acceptors in recurrently anoxic environments. Nat Geosci 7:195–200

    Article  CAS  Google Scholar 

  52. Kuypers MMM, Sliekers AO, Lavik G, Schmid M, Jørgensen BB, Kuenen JG, Sinninghe Damste JS, Strous M, Jetten MSM (2003) Anaerobic ammonium oxidation by anammox bacteria in the Black Sea. Nature 422:608–611

    CAS  Article  Google Scholar 

  53. Laufer K, Røy H, Jørgensen BB, Kappler A (2016) Evidence for the existence of autotrophic nitrate-reducing Fe(II)-oxidizing bacteria in marine coastal sediment. Appl Eviron Microbiol 82:6120–6131

    CAS  Article  Google Scholar 

  54. Lide DR (2012) CRC handboook of chemistry and physics. CRC Press, Boca Raton

    Google Scholar 

  55. Liu ST, Yang FL, Gong Z, Meng FG, Chen HH, Xue Y, Furukawa K (2008) Application of anaerobic ammonium oxidizing consortium to achieve completely autotrophic ammonium and sulfate removal. Bioresour Technol 99:6817–6825

    CAS  Article  Google Scholar 

  56. Liu ZC, Yuan LJ, Zhou GB, Li J (2015) Achievement of sulfate-reducing anaerobic ammonium oxidation reactor started with nitrate-reducing anaerobic ammonium oxidation. Envirn Sci 36:3345–3351

    CAS  Google Scholar 

  57. Li XF, Hou LJ, Liu M, Zheng YL, Yin GY, Lin XB, Cheng L, Li Y, Hu XT (2015) Evidence of nitrogen loss from anaerobic ammonium oxidation coupled with ferric iron reduction in an intertidal wetland. Environ Sci Technol 49:11560–11568

    CAS  Article  Google Scholar 

  58. Majzlan J, Lang BE, Stevens R, Navrotsky A, Woodfield BF, Boerio-Goates J (2003) Thermodynamics of Fe oxides: part I. Entropy at standard temperature and pressure and heat capacity of goethite (α-FeOOH), lepidocrocite (γ-FeOOH), and maghemite (γ-Fe2O3). Am Mineral 88:846–854

    CAS  Article  Google Scholar 

  59. Majzlan J, Navrotsky A, Schwertmann U (2004) Thermodynamics of iron oxides: part III. Enthalpies of formation and stability of ferrihydrite (~Fe(OH)3), schwertmannite (~FeO(OH)3/4(SO4)1/8), and ε-Fe2O3. Geochim Cosmochim Acta 68:1049–1059

    CAS  Article  Google Scholar 

  60. Martin JH (1990) Glacial-interglacial CO2 change: the iron hypothesis. Paleoceanography 5:1–13

    Article  Google Scholar 

  61. McGlynn SE, Chadwick GL, Kempes CP, Orphan VJ (2015) Single cell activity reveals direct electron transfer in methanotrophic consortia. Nature 526:531–535

    CAS  Article  Google Scholar 

  62. Milucka J, Ferdelman TG, Polerecky L, Franzke D, Wegener G, Schmid M, Lieberwirth I, Wagner M, Widdel F, Kuypers MMM (2012) Zero-valent sulphur is a key intermediate in marine methane oxidation. Nature 491:541–546

    CAS  Article  Google Scholar 

  63. Miot J, Benzerara K, Obst M, Kappler A, Hegler F, Schädler S, Bouchez C, Guyot F, Morin G (2009) Extracellular iron biomineralization by photoautotrophic iron-oxidizing bacteria. Appl Environ Microbiol 75:5586–5591

    CAS  Article  Google Scholar 

  64. Moran JJ, Beal EJ, Vrentas JM, Orphan VJ, Freeman KH, House CH (2008) Methyl sulfides as intermediates in the anaerobic oxidation of methane. Environ Microbiol 10:162–173

    CAS  Google Scholar 

  65. Muehe EM, Gerhardt S, Schink B, Kappler A (2009) Ecophysiology and the energetic benefit of mixotrophic Fe(II) oxidation by various strains of nitrate-reducing bacteria. FEMS Microbiol Ecol 70:335–343

    CAS  Article  Google Scholar 

  66. Neal AL, Techkarnjanaruk S, Dohnalkova A, McCready D, Peyton BM, Geesey GG (2001) Iron sulfides and sulfur species produced at hematite surfaces in the presence of sulfate-reducing bacteria. Geochim Cosmochim Acta 65:223–235

    CAS  Article  Google Scholar 

  67. Newman DK, Kolter R (2000) A role for excreted quinones in extracellular electron transfer. Nature 405:94–97

    CAS  Article  Google Scholar 

  68. Ottley CJ, Davison W, Edmunds WM (1997) Chemical catalysis of nitrate reduction by iron(II). Geochim Cosmochim Acta 61:1819–1828

    CAS  Article  Google Scholar 

  69. Park W, Nam YK, Lee MJ, Kim TH (2009) Anaerobic ammonia-oxidation coupled with Fe3+ reduction by an anaerobic culture from a piggery wastewater acclimated to NH4 +/Fe3+ medium. Biotechnol Bioprocess Eng 14:680–685

    CAS  Article  Google Scholar 

  70. Patrick WH, Jugsujinda A (1992) Sequential reduction and oxidation of inorganic nitrogen, manganese, and iron in flooded soil. Soil Sci Soc Amer J 56:1071–1073

    CAS  Article  Google Scholar 

  71. Payne EK, Burgin AJ, Hamilton SK (2009) Sediment nitrate manipulation using porewater equilibrators reveals potential for N and S coupling in freshwaters. Aquat Microb Ecol 4:233–241

    Article  Google Scholar 

  72. Peng XT, Guo ZX, Chen S, Sun ZL, Xu HC, Ta KW, Zhang JC, Zhang LJ, Li JW, Du MG (2017) Formation of carbonate pipes in the northern Okinawa Trough linked to strong sulfate exhaustion and iron supply. Geochim Cosmochim Acta 205:1–13

    CAS  Article  Google Scholar 

  73. Picardal F (2012) Abiotic and microbial interactions during anaerobic transformations of Fe(II) and NOx. Front Microbiol 3:1–7

    Article  Google Scholar 

  74. Postma D, Jakobsen R (1996) Redox zonation: equilibrium constraints on the Fe(III)/SO4 reduction interface. Geochim Cosmochim Acta 60:3169–3175

    Article  Google Scholar 

  75. Raghoebarsing AA, Pol A, van de Pas-Schoonen KT, Smolders AJ, Ettwig KF, Rijpstra WI, Schouten S, Damste JS, Op den Camp HJ, Jetten MS, Strous M (2006) A microbial consortium couples anaerobic methane oxidation to denitrification. Nature 440:918–921

    CAS  Article  Google Scholar 

  76. Rau J, Knackmuss HJ, Stolz A (2002) Effects of different quinoid redox mediators on the anaerobic reduction of azo dyes by bacteria. Environ Sci Technol 36:1497–1504

    CAS  Article  Google Scholar 

  77. Reeburgh WS (2007) Oceanic methane biogeochemistry. Chem Rev 107:486–513

    CAS  Article  Google Scholar 

  78. Rich JJ, Dale OR, Song B, Ward BB (2008) Anaerobic ammonium oxidation (anammox) in Chesapeake Bay sediments. Microb Ecol 55:311–320

    CAS  Article  Google Scholar 

  79. Rikmann E, Zekker I, Tomingas M, Tenno T, Menert A, Loorits L, Tenno T (2012) Sulfate-reducing anaerobic ammonium oxidation as a potential treatment method for high nitrogen-content wastewater. Biodegradation 23:509–524

    CAS  Article  Google Scholar 

  80. Robertson EK, Roberts KL, Burdorf LD, Cook P, Thamdrup B (2016) Dissimilatory nitrate reduction to ammonium coupled to Fe(II) oxidation in sediments of a periodically hypoxic estuary. Limnol Oceanogr 61:365–381

    CAS  Article  Google Scholar 

  81. Roden EE, Kappler A, Bauer I, Jie J, Paul A, Stoesser R, Konishi H, Xu HF (2010) Extracellular electron transfer through microbial reduction of solid-phase humic substances. Nat Geosci 3:417–421

    CAS  Article  Google Scholar 

  82. Rysgaard S, Glud RN (2004) Anaerobic N2 production in Arctic sea ice. Limnol Oceanogr 49:86–94

    CAS  Article  Google Scholar 

  83. Sawayama S (2006) Possibility of anoxic ferric ammonium oxidation. J Biosci Bioeng 101:70–72

    CAS  Article  Google Scholar 

  84. Scheller S, Yu H, Chadwick GL, McGlynn SE, Orphan VJ (2016) Artificial electron acceptors decouple archaeal methane oxidation from sulfate reduction. Science 351:703–707

    CAS  Article  Google Scholar 

  85. Schmid MC, Risgaard-Petersen N, van de Vossenberg J, Kuypers MM, Lavik G, Petersen J, Hulth S, Thamdrup B, Canfield D, Dalsgaard T, Rysgaard S, Sejr MK, Strous M, den Camp HJ, Jetten MS (2007) Anaerobic ammonium-oxidizing bacteria in marine environments: widespread occurrence but low diversity. Environ Microbiol 9:1476–1484

    CAS  Article  Google Scholar 

  86. Schrum HN, Spivack AJ, Kastner M, D’Hondt S (2009) Sulfate reducing ammonium oxidation: a thermodynamically feasible metabolic pathway in subseafloor sediment. Geology 37:939–942

    CAS  Article  Google Scholar 

  87. Schubert CJ, Durisch-Kaiser E, Wehrli B, Thamdrup B, Lam P, Kuypers MMM (2006) Anaerobic ammonium oxidation in a tropical freshwater system (Lake Tanganyika). Environ Microbiol 8:1857–1863

    CAS  Article  Google Scholar 

  88. Scott DT, McKnight DM, Blunt-Harris EL, Kolesar SE, Lovley DR (1998) Quinone moieties act as electron acceptors in the reduction of humic substances by humics-reducing microorganisms. Environ Sci Technol 32:2984–2989

    CAS  Article  Google Scholar 

  89. Shen JP, Xu Z, He JZ (2014) Frontiers in the microbial processes of ammonia oxidation in soils and sediments. J Soils Sediments 14:1023–1029

    CAS  Article  Google Scholar 

  90. Shrestha J, Rich JJ, Ehrenfeld JG, Jaffe PR (2009) Oxidation of ammonium to nitrite under iron-reducing conditions in wetland soils: laboratory, field demonstrations, and push-pull rate determination. Soil Sci 174:156–164

    CAS  Article  Google Scholar 

  91. Sørensen J, Thorling L (1991) Stimulation by lepidocrocite of Fe(II)-dependent nitrite reduction. Geochim Cosmochim Acta 55:1289–1294

    Article  Google Scholar 

  92. Straub KL, Benz M, Schink B, Widdel F (1996) Anaerobic, nitrate-dependent microbial oxidation of ferrous iron. Appl Environ Microbiol 62:1458–1460

    CAS  Google Scholar 

  93. Straub KL, Schönhuber WA, Buchholz-Cleven BE, Schink B (2004) Diversity of ferrous iron-oxidizing, nitrate-reducing bacteria and their involvement in oxygen-independent iron cycling. Geomicrobiol J 21:371–378

    CAS  Article  Google Scholar 

  94. Tice MM, Lowe DR (2004) Photosynthetic microbial mats in the 3,416-Myr-old ocean. Nature 431:549–552

    CAS  Article  Google Scholar 

  95. Uchimiya M, Stone AT (2006) Redox reactions between iron and quinones: thermodynamic constraints. Geochim Cosmochim Acta 70:1388–1401

    CAS  Article  Google Scholar 

  96. Wang XN, Sun GX, Li XM, Clarke TA, Zhu YG (2017) Electron shuttle-mediated microbial Fe(III) reduction under alkaline conditions. J Soils Sediments. doi:10.1007/s11368-017-1736-y

  97. Wegener G, Krukenberg V, Riedel D, Tegetmeyer HE, Boetius A (2015) Intercellular wiring enables electron transfer between methanotrophic archaea and bacteria. Nature 526:587–590

    CAS  Article  Google Scholar 

  98. Widdel F, Schnell S, Heising S, Ehrenreich A, Assmus B, Schink B (1993) Ferrous iron oxidation by anoxygenic phototrophic bacteria. Nature 362:834–836

    CAS  Article  Google Scholar 

  99. Yang X, Huang S, Wu Q, Zhang R (2012a) Nitrate reduction coupled with microbial oxidation of sulfide in river sediment. J Soils and Sediments 12:1435–1444

    CAS  Article  Google Scholar 

  100. Yang WH, Weber KA, Silver WL (2012b) Nitrogen loss from soil through anaerobic ammonium oxidation coupled to iron reduction. Nat Geosci 5:538–541

    CAS  Article  Google Scholar 

  101. Yang Z, Zhou S, Sun Y (2009) Start-up of simultaneous removal of ammonium and sulfate from an anaerobic ammonium oxidation (anammox) process in an anaerobic up-flow bioreactor. J Hazard Mater 169:113–118

    CAS  Article  Google Scholar 

  102. Yuan Y, Huang Y, Li X, Zhang CL, Zhang L, Pan Y, Liu FX (2013) Characteristics of sulfate reduction-ammonia oxidation reaction. Environ Sci 34:4362–4369

    CAS  Google Scholar 

  103. Zehnder AJ, Brock TD (1980) Anaerobic methane oxidation: occurrence and ecology. Appl Environ Microbiol 39:194–204

    CAS  Google Scholar 

  104. Zhang L, Zheng P, He YH, Jin RC (2009) Performance of sulfate-dependent anaerobic ammonium oxidation. Sci China Ser B: Chem 52:86–92

    CAS  Article  Google Scholar 

  105. Zhou GW, Yang XR, Li H, Marshall CW, Zheng BX, Yan Y, Su JQ, Zhu YG (2016) Electron shuttles enhance anaerobic ammonium oxidation coupled to iron(III) reduction. Environ Sci Technol 50:9298–9307

    CAS  Article  Google Scholar 

  106. Zhu GB, Peng YZ, Li BK, Guo JH, Yang Q, Wang SY (2008) Biological removal of nitrogen from wastewater. Rev Environ Contam T 192:159–195

    CAS  Google Scholar 

  107. Zhu GB, Wang SY, Zhou LL, Wang Y, Zhao SY, Xia C, Wang WD, Zhou R, Wang CX, Jetten MS, Hefting MM, Yin CQ, Qu JH (2015) Ubiquitous anaerobic ammonium oxidation in inland waters of China: an overlooked nitrous oxide mitigation process. Sci Rep 5:1–10

    Google Scholar 

  108. Zhu YG, Duan GL, Chen BD, Peng XH, Chen Z, GX S (2014) Mineral weathering and element cycling in soil-microorganism-plant system. Sci China Earth Sci 57:888–896

    CAS  Article  Google Scholar 

  109. Zub S, Kurissoo T, Menert A, Blonskaja V (2008) Combined biological treatment of high-sulphate wastewater from yeast production. Water Environ J 22:274–286

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the State Key Program of Natural Science Foundation of China (No. 41430858), the National Natural Science Foundation of China (No. 41571130062), and National Key Research and Development Program of China (2016YFD0800400).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yong-Guan Zhu.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Responsible editor: Kitae Baek

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, XN., Sun, GX. & Zhu, YG. Thermodynamic energy of anaerobic microbial redox reactions couples elemental biogeochemical cycles. J Soils Sediments 17, 2831–2846 (2017). https://doi.org/10.1007/s11368-017-1767-4

Download citation

Keywords

  • Anaerobic microorganisms
  • Elemental biogeochemical cycles
  • Redox reactions
  • Thermodynamic energy