Advertisement

Journal of Soils and Sediments

, Volume 17, Issue 10, pp 2537–2546 | Cite as

An overlooked nitrogen loss linked to anaerobic ammonium oxidation in estuarine sediments in China

  • Xiao-Ru Yang
  • Bo-Sen Weng
  • Hu Li
  • Christopher W. Marshall
  • Hong Li
  • Yong-Shan Chen
  • Shen Yu
  • Gui-Bing Zhu
  • Yong-Guan Zhu
Sediments, Sec 2 • Physical and Biogeochemical Processes • Research Article

Abstract

Purpose

Despite its importance, anammox (anaerobic ammonium oxidation) in estuarine sediment systems remains poorly understood, particularly at the continental scale. This study aimed to understand the abundance, diversity, and activity of anammox bacteria and to determine the main factors influencing the anammox process in estuarine sediments in China.

Materials and methods

Estuarine sediments were collected from 18 estuaries spanning over 4000 km. Experiments using an 15 N–tracer, quantitative PCR, and clone library construction were used to determine the activity, abundance, and diversity of anammox bacteria. The impact of environmental factors on anammox processes was also determined.

Results and discussion

The abundance of the anammox-specific hydrazine synthase (hzsB) gene ranged from 1.8 × 105 ± 3.4 × 104 to 3.6 × 108 ± 7.5 × 107 copies g−1 dw. Candidatus Scalindua, Brocadia, Kuenenia, Jettenia, and two novel unidentified clusters were detected, with Scalindua dominating the anammox population. Additionally, the abundances of Scalindua, Kuenenia, and Brocadia were found to be significantly correlated with latitude. The anammox rates ranged from 0.29 ± 0.15 to 13.68 ± 3.98 nmol N g−1 dw h−1 and contributed to 2.39–82.61% of total N2 production. Pearson correlation analysis revealed that the anammox rate was positively correlated with total nitrogen, total carbon, and temperature, and was negatively correlated with dissolved oxygen (DO). The key factors influencing the hzsB gene abundance were ammonium concentration, salinity, and DO. Ammonium concentration, pH, temperature, and latitude were main variables shaping the anammox-associated bacterial community.

Conclusions

Our results suggested that anammox bacteria are ubiquitous in coastal estuaries in China and underline the importance of anammox resulting in N loss at a continental scale.

Keywords

Activity Anammox Estuarine sediments N loss Spatial variation 

Notes

Acknowledgements

This study was financially supported by the Natural Science Foundation of China (41401297, 41571130063), the China Postdoctoral Science Foundation (2014M551846), and the International Science & Technology Cooperation Program of China (2011DFB91710).

Supplementary material

11368_2017_1728_MOESM1_ESM.docx (692 kb)
ESM 1 (DOCX 691 kb)

References

  1. Brabandere LD, Canfield DE, Dalsgaard T, Friederich GE, Revsbech NP, Ulloa O, Thamdrup B (2014) Vertical partitioning of nitrogen-loss processes across the oxic-anoxic interface of an oceanic oxygen minimum zone. Environ Microbiol 16:3041–3054CrossRefGoogle Scholar
  2. Broda E (1977) Two kinds of lithotrophs missing in nature. Z Allg Mikrobiol 17:491–493CrossRefGoogle Scholar
  3. Cao HL, Hong YG, Li M, Gu JD (2011) Diversity and abundance of ammonia-oxidizing prokaryotes in sediments from the coastal Pearl River estuary to the South China Sea. Anton. Leeuw. Int J G 100:545–556CrossRefGoogle Scholar
  4. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Meth 7(5):335–336CrossRefGoogle Scholar
  5. China Agricultural Yearbook, 2012Google Scholar
  6. Cui SH, Shi YL, Groffman PM, Schlesinger WH, Zhu YG (2013) Centennial-scale analysis of the creation and fate of reactive nitrogen in China (1910–2010). Proc Natl Acad Sci U S A 110:2052–2057CrossRefGoogle Scholar
  7. Dale OR, Tobias CR, Song BK (2009) Biogeographical distribution of diverse anaerobic ammonium oxidizing (anammox) bacteria in Cape Fear River Estuary. Environ Microbiol 11:1194–1207CrossRefGoogle Scholar
  8. Dang HY, Chen RP, Wang L, Guo LZ, Chen PP, Tang ZW, Tian F, Li SZ, Klotz M (2010) Environmental factors shape sediment anammox bacterial communities in hypernutrified Jiaozhou Bay, China. Appl Environ Microbiol 76:7036–7047CrossRefGoogle Scholar
  9. Dang HY, Zhou HX, Zhang ZN, Yu ZS, Hua E, Liu CS, Jiao NZ (2013) Molecular detection of Candidatus Scalindua pacifica and environmental responses of sediment anammox bacterial community in the Bohai Sea, China. PLoS One 8:e61330CrossRefGoogle Scholar
  10. Dang HY, Huang RF, Jiao NZ (2016) Inspirations from the scientific discovery of the anammox bacteria: a classic example of how scientific principles can guide discovery and development. Sci China Earth Sci 59:449–455CrossRefGoogle Scholar
  11. Deegan LA, Johnson DS, Warren RS, Peterson BJ, Fleeger JW, Fagherazzi S, Wollheim WM (2012) Coastal eutrophication as a driver of salt marsh loss. Nature 490:388–392CrossRefGoogle Scholar
  12. Engstrom P, Dalsgaard T, Hulth S, Aller RC (2005) Anaerobic ammonium oxidation by nitrite (anammox): implications for N2 production in coastal marine sediments. Geochim Cosmochim Acta 69:2057–2065CrossRefGoogle Scholar
  13. Etchebehere C, Tiedje J (2005) Presence of two different active nirS nitrite reductase genes in a denitrifying Thauera sp. from a high-nitrate-removal-rate reactor. Appl Environ Microbiol 71(9):5642–5645CrossRefGoogle Scholar
  14. Gori F, Tringe SG, Kartal B, Marchiori E, Machiori E, Jetten M (2011) The metagenomic basis of anammox metabolism in Candidatus ‘Brocadia fulgida’. Biochem Soc T 39(6):1799–1804CrossRefGoogle Scholar
  15. Hamersley MR, Woebken D, Boehrer B, Schultze M, Lavik G, Kuypers MMM (2009) Water column anammox and denitrification in a temperate permanently stratified lake (Lake Rassnitzer, Germany). Syst Appl Microbiol 32:571–582CrossRefGoogle Scholar
  16. Hong YG, Xu XR, Kan JJ, Chen F (2014) Linking seasonal inorganic nitrogen shift to the dynamics of microbial communities in the Chesapeake Bay. Appl Microbiol Biotechnol 98:3219–3229CrossRefGoogle Scholar
  17. Hou LJ, Zheng YL, Liu M, Li XF, Lin XB, Yin GY, Gao J, Deng FY, Chen F, Jiang XF (2015) Anaerobic ammonium oxidation and its contribution to nitrogen removal in China’s coastal wetlands. Sci Rep 5:15621CrossRefGoogle Scholar
  18. Hu BL, Shen LD, Zheng P, Hu AH, Chen TT, Cai C, Liu S, Hou LP (2012) Distribution and diversity of anaerobic ammonium-oxidizing bacteria in the sediments of the Qiantang River. Environ Microbiol Rep 4:540–547CrossRefGoogle Scholar
  19. Jetten MSM, Op den Camp HJM, Kuenen JG, Strous M (2010) Description of the order Brocadiales. In: Krieg NR, Staley JT, Hedlund BP, Paster BJ, Ward N, Ludwig W, Whitman WB (eds) Bergey’s manual of systematic bacteriology. Springer, HeidelbergGoogle Scholar
  20. Juretschko S, Timmermann G, Schmid M, Schleifer KH, Pommerening-Roser A, Koops HP, Wagner M (1998) Combined molecular and conventional analyses of nitrifying bacterium diversity in activated sludge: Nitrosococcus mobilis and Nitrospira-like bacteria as dominant populations. Appl Environ Microbiol 64:3042–3051Google Scholar
  21. Kartal B, Kuypers MMM, Lavik G, Schalk J, den Camp HJMO, Jetten MSM, Strous M (2007) Anammox bacteria disguised as denitrifiers: nitrate reduction to dinitrogen gas via nitrite and ammonium. Environ Microbiol 9:635–642CrossRefGoogle Scholar
  22. Kartal B, van Niftrik L, Rattray J, de Vossenberg JLCMV, Schmid MC, Damste JSS, Jetten MSM, Strous M (2008) Candidatus ‘Brocadia fulgida’: an autofluorescent anaerobic ammonium oxidizing bacterium. FEMS Microbiol Ecol 63:46–55CrossRefGoogle Scholar
  23. Kartal B, Maalcke WJ, de Almeida NM, Cirpus I, Gloerich J, Geerts W, den Camp HJMO, Harhangi HR, Janssen-Megens EM, Francoijs KJ, Stunnenberg HG, Keltjens JT, Jetten MSM, Strous M (2011) Molecular mechanism of anaerobic ammonium oxidation. Nature 479:127–U159CrossRefGoogle Scholar
  24. Kuypers MM, Lavik G, Woebken D, Schmid M, Fuchs BM, Amann R, Jørgensen BB, Jetten MS (2005) Massive nitrogen loss from the Benguela upwelling system through anaerobic ammonium oxidation. Proc Natl Acad Sci U S A 102(18):6478–6483CrossRefGoogle Scholar
  25. Li M, Hong YG, Cao HL, Gu JD (2011) Mangrove trees affect the community structure and distribution of anammox bacteria at an anthropogenic-polluted mangrove in the Pearl River Delta reflected by 16S rRNA and hydrazine oxidoreductase (HZO) encoding gene analyses. Ecotoxicology 20:1780–1790CrossRefGoogle Scholar
  26. Lisa J, Song B, Tobias CR, Duernberger KA (2014) Impacts of freshwater flushing on anammox community structure and activities in the New River Estuary, USA. Aquat Microb Ecol 72:17–31CrossRefGoogle Scholar
  27. Long A, Heitman J, Tobias C, Philips R, Song B (2013) Co-occurring anammox, denitrification, and codenitrification in agricultural soils. Appl Environ Microbiol 79:168–176CrossRefGoogle Scholar
  28. Malte K, Max W, Vanessa D, Martin W, Cordula AJ, Andreas SR, Rolf B, David M, Marie F, Wolfgang SS, Roland S (2015) Cell type specific gene expression analysis of prostate needle biopsies resolves tumor tissue heterogeneity. Oncotarget 6:1302–1314CrossRefGoogle Scholar
  29. Metz S, Beisker W, Hartmann A, Schloter M (2003) Detection methods for the expression of the dissimilatory copper-containing nitrite reductase gene (DnirK) in environmental samples. J Microbiol Methods 55(1):41–50CrossRefGoogle Scholar
  30. Mulder A, van de Graaf AA, Robertson LA, Kuenen JG (1995) Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor. FEMS Microbiol Ecol 16:177–184CrossRefGoogle Scholar
  31. Nie SA, Li H, Yang XR, Zhang ZJ, Weng BS, Huang FY, Zhu GB, Zhu YG (2015) Nitrogen loss by anaerobic oxidation of ammonium in rice rhizosphere. ISME J 9:2059–2067CrossRefGoogle Scholar
  32. Quan ZX, Rhee SK, Zuo JE, Yang Y, Bae JW, Park JR, Lee ST, Park YH (2008) Diversity of ammonium-oxidizing bacteria in a granular sludge anaerobic ammonium-oxidizing (anammox) reactor. Environ Microbiol 10:3130–3139CrossRefGoogle Scholar
  33. Richard FA (1965) Anoxic basins and fjords. In: Ripley JP, Skirrow G (eds) Chemical oceanography, vol 1. Academic Press, Manhattan, pp 611–645Google Scholar
  34. Risgaard-Petersen N, Meyer RL, Schmid M, Jetten MSM, Enrich-Prast A, Rysgaard S, Revsbech NP (2004) Anaerobic ammonium oxidation in an estuarine sediment. Aquat Microb Ecol 36:293–304CrossRefGoogle Scholar
  35. Rysgaard S, Glud RN, Risgaard-Petersen N, Dalsgaard T (2004) Denitrification and anammox activity in Arctic marine sediments. Limnol Oceanogr 49(5):1493–1502CrossRefGoogle Scholar
  36. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75(23):7537–7541CrossRefGoogle Scholar
  37. Schmid M, Twachtmann U, Klein M, Strous M, Juretschko S, Jetten M, Metzger JW, Schleifer KH, Wagner M (2000) Molecular evidence for genus level diversity of bacteria capable of catalyzing anaerobic ammonium oxidation. Syst Appl Microbiol 23:93–106CrossRefGoogle Scholar
  38. Schmid M, Walsh K, Webb R, Rijpstra WIC, van de Pas-Schoonen K, Verbruggen MJ, Hill T, Moffett B, Fuerst J, Schouten S, Damste JSS, Harris J, Shaw P, Jetten M, Strous M (2003) Candidatus “Scalindua brodae”, sp. nov., Candidatus “Scalindua wagneri”, sp. nov., two new species of anaerobic ammonium oxidizing bacteria. Syst Appl Microbiol 26:529–538CrossRefGoogle Scholar
  39. Schmid MC, Maas B, Dapena A, de Pas-Schoonen KV, de Vossenberg JV, Kartal B, van Niftrik L, Schmidt I, Cirpus I, Kuenen JG, Wagner M, Damste JSS, Kuypers M, Revsbech NP, Mendez R, Jetten MSM, Strous M (2005) Biomarkers for in situ detection of anaerobic ammonium-oxidizing (anammox) bacteria. Appl Environ Microbiol 71:1677–1684CrossRefGoogle Scholar
  40. Schmid MC, Risgaard-Petersen N, Van De Vossenberg J, Kuypers MM, Lavik G, Petersen J, Hulth S, Thamdrup B, Canfield D, Dalsgaard T (2007) Anaerobic ammonium-oxidizing bacteria in marine environments: widespread occurrence but low diversity. Environ Microbiol 9(6):1476–1484CrossRefGoogle Scholar
  41. Schubert CJ, Durisch-Kaiser E, Wehrli B, Thamdrup B, Lam P, Kuypers MM (2006) Anaerobic ammonium oxidation in a tropical freshwater system (Lake Tanganyika). Environ Microbiol 8(10):1857–1863CrossRefGoogle Scholar
  42. Shao SD, Luan XW, Dang HY, Zhou HX, Zhao YK, Liu HT, Zhang YB, Dai LQ, Ye Y, Klotz M (2014) Deep-sea methane seep sediments in the Okhotsk Sea sustain diverse and abundant anammox bacteria. FEMS Microbiol Ecol 87:503–516CrossRefGoogle Scholar
  43. Tamura KD, Peterson N, Peterson G, Stecher M, Nei KS (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10):2731–2739CrossRefGoogle Scholar
  44. Thamdrup B, Dalsgaard T (2002) Production of N2 through anaerobic ammonium oxidation coupled to nitrate reduction in marine sediments. Appl Environ Microbiol 68:1312–1318CrossRefGoogle Scholar
  45. Trimmer M, Nicholls JC (2009) Production of nitrogen gas via anammox and denitrifcation in intact sediment cores along a continental shelf to slope transect in the North Atlantic. Limnol Oceanogr 54:577–589CrossRefGoogle Scholar
  46. Trimmer M, Nicholls JC, Deflandre B (2003) Anaerobic ammonium oxidation measured in sediments along the Thames Estuary, United Kingdom. Appl Environ Microbiol 69:6447–6454CrossRefGoogle Scholar
  47. Wang Y, Zhu G, Harhangi HR, Zhu B, Jetten MSM, Yin C, Op den Camp HJM (2012a) Co-occurrence and distribution of nitrite-dependent anaerobic ammonium and methane-oxidizing bacteria in a paddy soil. FEMS Microbiol Lett 336:79–88CrossRefGoogle Scholar
  48. Wang S, Zhu G, Peng Y, Jetten MSM, Yin C (2012b) Anammox bacterial abundance, activity, and contribution in riparian sediments of the Pearl River estuary. Environ Sci Technol 46:8834–8842CrossRefGoogle Scholar
  49. Wenk CB, Zopfi J, Gardner WS, McCarthy MJ, Niemann H, Veronesi M, Lehmann MF (2014) Partitioning between benthic and pelagic nitrate reduction in the Lake Lugano south basin. Limnol Oceanogr 59:1421–1433CrossRefGoogle Scholar
  50. Yang XR, Li H, Nie SA, Su JQ, Weng BS, Zhu GB, Yao HY, Gilbert JA, Zhu YG (2015) Potential contribution of anammox to nitrogen loss from paddy soils in Southern China. Appl Environ Microbiol 81:938–947CrossRefGoogle Scholar
  51. Zhang Y, Ruan XH, Camp HJMO, Smits TJ, Jetten M, Schmid M (2007) Diversity and abundance of aerobic and anaerobic ammonium-oxidizing bacteria in freshwater sediments of the Xinyi River (China). Environ Microbiol 9:2375–2382CrossRefGoogle Scholar
  52. Zhao Y, Xia Y, Kana TM, Wu Y, Li X, Yan X (2013) Seasonal variation and controlling factors of anaerobic ammonium oxidation in freshwater river sediments in the Taihu Lake region of China. Chemosphere 93(9):2124-2131Google Scholar
  53. Zhu G, Wang S, Wang Y, Wang C, Risgaard-Petersen N, Jetten MSM, Yin C (2011) Anaerobic ammonia oxidation in a fertilized paddy soil. ISME J 5:1905–1912CrossRefGoogle Scholar
  54. Zhu G, Wang S, Wang W, Wang Y, Zhou L, Jiang B, Camp HJMO, Risgaard-Petersen N, Schwark L, Peng Y, Hefting MM, MSM J, Yin C (2013) Hotspots of anaerobic ammonium oxidation at land–freshwater interfaces. Nat Geosci 6:103–107CrossRefGoogle Scholar
  55. Zhu GB, Wang SY, Zhou LL, Wang Y, Zhao SY, Xia C, Wang WD, Zhou R, Wang CX, Jetten MSM, Hefting MM, Yin CQ, Qu JH (2015) Ubiquitous anaerobic ammonium oxidation in inland waters of China: an overlooked nitrous oxide mitigation process. Sci Rep 5:17306CrossRefGoogle Scholar
  56. Zhu Y-G, Su J-Q, Cao Z, Xue K, Quensen J, Guo G-X, Yang Y-F, Zhou J, Chu H-Y, Tiedje JM (2016) A buried Neolithic paddy soil reveals loss of microbial functional diversity after modern rice cultivation. Sci Bull 61(13):1052–1060Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Xiao-Ru Yang
    • 1
  • Bo-Sen Weng
    • 1
  • Hu Li
    • 1
  • Christopher W. Marshall
    • 2
    • 3
  • Hong Li
    • 4
  • Yong-Shan Chen
    • 1
  • Shen Yu
    • 1
  • Gui-Bing Zhu
    • 5
  • Yong-Guan Zhu
    • 1
  1. 1.Key Laboratory of Urban Environment and Health, Institute of Urban EnvironmentChinese Academy of SciencesXiamenChina
  2. 2.Department of SurgeryUniversity of ChicagoChicagoUSA
  3. 3.Biosciences DivisionArgonne National LaboratoryLemontUSA
  4. 4.Lancaster Environment CentreLancaster UniversityLancasterUK
  5. 5.Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental SciencesChinese Academy of SciencesBeijingChina

Personalised recommendations