Skip to main content

Advertisement

Log in

Comparison of ammonium fertilizers, EDTA, and NTA on enhancing the uptake of cadmium by an energy plant, Napier grass (Pennisetum purpureum Schumach)

  • Soils, Sec 3 • Remediation and Management of Contaminated or Degraded Lands • Research Article
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study was to quantify the effect of enhanced agronomic practices on cadmium (Cd) accumulation in the high-biomass energy plant Napier grass (Pennisetum purpureum Schumach).

Materials and methods

Potted-plant experiments were performed to investigate the effects of ammonium fertilizers and chelating agents, alone or in combination, on the growth, accumulation of Cd, and phytoextraction efficiency of P. purpureum on Cd-contaminated soil. The fertilizers included ammonium nitrate, ammonium sulfate, and ammonium chloride. The chelating agents included ethylenediaminetetraacetic acid (EDTA) and nitrilotriacetic acid (NTA).

Results and discussion

The addition of ammonium fertilizers and chelating agents generally stimulated growth of P. purpureum, and the shoots accounted for 90.1–94.1% of the total biomass. The concentrations of Cd in different parts of P. purpureum plants were in the order root > leaf > stem. Ammonium chloride alone showed effectiveness in increasing root and shoot Cd concentrations compared to other amendments alone. Both EDTA alone and NTA alone significantly decreased root Cd concentration and increased shoot Cd concentration, while EDTA alone was more efficient on shoot and total Cd accumulation than that by NTA alone. The total accumulation of Cd in P. purpureum ranged from 1.10 to 2.05 mg per plant with 47.3–73.5% of Cd accumulation concentrated in shoots. The results indicate that P. purpureum can remove more Cd through phytoextraction than that by other hyperaccumulators.

Conclusions

Ammonium chloride led to the highest total Cd accumulation. Ammonium chloride applied alone or in combination with either EDTA or NTA resulted in the most effective agronomic approaches for P. purpureum phytoextraction of soil Cd.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Baker AJM, Reeves RD, Hajar ASM (1994) Heavy metal accumulation and tolerance in British populations of the metallophyte Thlaspi caerulescens J. & C. Presl (Brassicaceae). New Phytol 127:61–68

    Article  CAS  Google Scholar 

  • Chen T, Liu X, Zhang X, Hou Y, Chen X, Tao K (2016) Enhanced Scirpus triqueter phytoremediation of pyrene and lead co-contaminated soil with alkyl polyglucoside and nitrilotriacetic acid combined application. J Soils Sediments 16(8):2090–2096

    Article  CAS  Google Scholar 

  • Custos JM, Moyne C, Treillon T, Sterckeman T (2014) Contribution of Cd-EDTA complexes to cadmium uptake by maize: a modelling approach. Plant Soil 374:497–512

    Article  CAS  Google Scholar 

  • Ent AVD, Baker AJM, Reeves RD, Pollard AJ, Schat H (2013) Hyperaccumulators of metal and metalloid trace elements: facts and fiction. Plant Soil 362:319–334

    Article  Google Scholar 

  • Fässler E, Robinson BH, Stauffer W, Gupta SK, Papritz A, Schulin R (2010) Phytomanagement of metal-contaminated agricultural land using sunflower, maize and tobacco. Agric Ecosyst Environ 136:49–58

    Article  Google Scholar 

  • Freitas EVD, Nascimento CWA (2009) The use of NTA for lead phytoextraction from soil from a battery recycling site. J Hazard Mater 171:833–837

    Article  CAS  Google Scholar 

  • Kayser A, Wenger K, Keller A, Attinger W, Felix HR, Gupta SK, Schulin R (2000) Enhancement of phytoextraction of Zn, cd, and cu from calcareous soil: the use of NTA and sulfur amendments. Environ Sci Technol 34:1778–1783

    Article  CAS  Google Scholar 

  • Koopmans GF, Römkens PFAM, Fokkema MJ, Song J, Luo YM, Japenga J, Zhao FJ (2008) Feasibility of phytoextraction to remediate cadmium and zinc contaminated soils. Environ Pollut 156:905–914

    Article  CAS  Google Scholar 

  • Grčman H, Velikonja-Bolta Š, Vodnik D, Kos B, Leštan D (2001) EDTA enhanced heavy metal phytoextraction: metal accumulation, leaching and toxicity. Plant Soil 235:105–114

    Article  Google Scholar 

  • Jackson ML (1979) Soil chemical analysis: advanced course, 2nd edn. University of Wisconsin, Madison

    Google Scholar 

  • Juste C, Solda P (1988) Changes in the cadmium, manganese, nickel and zinc bioavailability of a sewage sludge–treated sandy soil as a result of ammonium sulphate, acid peat, lime or iron compound addition. Agronomie (Paris) 8:897–904

    Article  Google Scholar 

  • Kulli B, Balmer M, Krebs R, Lothenbach B, Geiger G, Schulin R (1999) The influence of nitrilotriacetate on heavy metal uptake of lettuce and ryegrass. J Environ Qual 28:1699–1705

    Article  CAS  Google Scholar 

  • Lambrechts T, Gustot Q, Couder E, Houben D, Iserentant A, Lutts S (2011) Comparison of EDTA-enhanced phytoextraction and phytostabilisation strategies with Lolium perenne on a heavy metal contaminated soil. Chemosphere 85:1290–1298

    Article  CAS  Google Scholar 

  • Lan J, Zhang S, Lin H, Li T, Xu X, Li Y, Jia Y, Gong G (2013) Efficiency of biodegradable EDDS, NTA and APAM on enhancing the phytoextraction of cadmium by Siegesbeckia orientalis L. grown in Cd-contaminated soils. Chemosphere 91:1362–1367

    Article  CAS  Google Scholar 

  • Liu W, Zhang C, Hu P, Luo Y, Wu L, Sale P, Tang C (2016) Influence of nitrogen form on the phytoextraction of cadmium by a newly discovered hyperaccumulator Carpobrotus rossii. Environ Sci Pollut Res 23:1246–1253

    Article  CAS  Google Scholar 

  • López ML, Peralta-Videa JR, Parsons JG, Benitez T, Gardea-Torresdey JL (2007) Gibberellic acid, kinetin, and the mixture indole-3-aceticacid–kinetin assisted with EDTA-induced lead hyperaccumulation in alfalfa plants. Environ Sci Technol 41:8165–8170

    Article  Google Scholar 

  • Lu M, Zhang ZZ, Wang JX, Zhang M, Xu YX, Wu XJ (2014) Interaction of heavy metals and pyrene on their fates in soil and tall fescue (Festuca arundinacea). Environ Sci Technol 48:1158–1165

    Article  CAS  Google Scholar 

  • Luo C, Shen Z, Li X (2004) Enhanced phytoextraction of Cu, Pb, Zn and Cd with EDTA and EDDS. Chemosphere 59:1–11

    Article  Google Scholar 

  • Ma C, Ming H, Lin C, Naidu R, Bolan N (2016) Phytoextraction of heavy metal from tailing waste using Napier grass. Catena 136:74–83

    Article  CAS  Google Scholar 

  • McLaughlin MJ, Lambrechts RM, Smolders E, Smart MK (1998) Effects of sulfate on cadmium uptake by Swiss chard: II. Effects due to sulfate addition to soil. Plant Soil 202:217–222

    Article  CAS  Google Scholar 

  • Meers E, Ruttens A, Hopgood MJ, Samson D, Tack FMG (2005) Comparison of EDTA and EDDS as potential soil amendments for enhanced phytoextraction of heavy metals. Chemosphere 58:1011–1022

    Article  CAS  Google Scholar 

  • Neugschwandtner RW, Tlustoš P, Komárek M, Száková J (2008) Phytoextraction of Pb and Cd from a contaminated agricultural soil using different EDTA application regimes: laboratory versus field scale measures of efficiency. Geoderma 144:446–454

    Article  CAS  Google Scholar 

  • Nowack B, Schulin R, Robinson BH (2006) Critical assessment of chelant enhanced metal phytoextraction. Environ Sci Technol 40:5225–5232

    Article  CAS  Google Scholar 

  • Ohtani T, Kawabata M, Sase A, Fukami M (2007) Cadmium and nutrient heavy metals uptake by rice, barley, and spinach as affected by four ammonium salts. J Plant Nutr 30:599–610

    Article  CAS  Google Scholar 

  • Puschenreiter M, Stöger G, Lombi E, Horak O, Wenzel W (2001) Phytoextraction of heavy metal contaminated soils with Thlaspi goesingense and Amaranthus hybridus: rhizosphere manipulation using EDTA and ammonium sulfate. J Plant Nutr Soil Sci 164:615–621

    Article  CAS  Google Scholar 

  • Qiu RL, Thangavel P, Hu PJ, Senthilkumar P, Ying RR, Tang YT (2011) Interaction of cadmium and zinc on accumulation and sub-cellular distribution in leaves of hyperaccumulator Potentilla griffithii. J Hazard Mater 186:1425–1430

    Article  CAS  Google Scholar 

  • Quartacci MF, Baker AJM, Navari-Izzo F (2005) Nitriloacetate- and citric acid-assisted phytoextraction of cadmium by Indian mustard (Brassica juncea (L.) Czernj, Brassicaceae). Chemosphere 59:1249–1255

    Article  CAS  Google Scholar 

  • Schwartz C, Echevarria G, Morel JL (2003) Phytoextraction of cadmium with Thlaspi caerulescens. Plant Soil 249:27–35

    Article  CAS  Google Scholar 

  • Shilev S, Naydenov M, Tahsin N, Sancho ED, Bennlloch M, Vancheva V, Sapundjieva K, Kuzmanova J (2007) Effect of easily biodegradable amendments on heavy metal solubilization and accumulation in technical crops—a field trial. J Environ Eng Landsc 15:237–242

    Google Scholar 

  • Smolders E, McLaughlin MJ (1996a) Effect of Cl on Cd uptake by Swiss chard in nutrient solutions. Plant Soil 179:57–64

    Article  CAS  Google Scholar 

  • Smolders E, McLaughlin MJ (1996b) Chloride increases cadmium uptake in Swiss chard in a resin-buffered nutrient solution. Soil Sci Soc Am J 60:1443–1447

    Article  CAS  Google Scholar 

  • The Ministry of Environmental Protection (2014) The Ministry of Land and Resources Report on the national soil contamination survey. http://www.mep.gov.cn/gkml/hbb/qt/201404/t20140417_270670.htm. accessed 27th August 2014

  • Tsadilas CD, Karaivazoglou NA, Tsotsolis NC, Stamatiadis S, Samaras V (2005) Cadmium uptake by tobacco as affected by liming, N form, and year of cultivation. Environ Pollut 134:239–246

    Article  CAS  Google Scholar 

  • Wang S, Liu J (2014) The effectiveness and risk comparison of EDTA with EGTA in enhancing Cd phytoextraction by Mirabilis jalapa L. Environ Monit Assess 186:751–759

    Article  CAS  Google Scholar 

  • Wei S, Zhu J, Zhou Q, Zhan J (2011) Fertilizer amendment for improving the phytoextraction of cadmium by a hyperaccumulator Rorippa globosa (Turcz.) Thell. J Soils Sediments 11:915–922

    Article  CAS  Google Scholar 

  • Wei S, Li Y, Zhou Q, Srivastava M, Chiu S, Zhan J, Wu Z, Sun T (2010) Effect of fertilizer amendments on phytoremediation of Cd-contaminated soil by a newly discovered hyperaccumulator Solanum nigrum L. J Hazard Mater 176:269–273

    Article  CAS  Google Scholar 

  • Wu F, Yang W, Zhang J, Zhou L (2010) Cadmium accumulation and growth responses of a poplar (Populus deltoids×Populus nigra) in cadmium contaminated purple soil and alluvial soil. J Hazard Mater 177:268–273

    Article  CAS  Google Scholar 

  • Xie HL, Jiang RF, Zhang FS, McGrath SP, Zhao FJ (2009) Effect of nitrogen form on the rhizosphere dynamics and uptake of cadmium and zinc by the hyperaccumulator Thlaspi caerulescens. Plant Soil 318:205–215

    Article  CAS  Google Scholar 

  • Yang XE, Long XX, Ye HB, He ZL, Calvert DV, Stoffella PJ (2004) Cadmium tolerance and hyperaccumulation in a new Zn-hyperaccumulating plant species (Sedum alfredii Hance). Plant Soil 259:181–189

    Article  CAS  Google Scholar 

  • Yu JZ, Klarup D (1994) Extraction kinetics of copper, zinc, iron, and manganese from contaminated sediment using disodium ethylenediaminetetraacetate. Water Air Soil Pollut 75:205–225

    Article  CAS  Google Scholar 

  • Zaccheo P, Crippa L, Pasta VDM (2006) Ammonium nutrition as a strategy for cadmium mobilization in the rhizosphere of sunflower. Plant Soil 283:43–56

    Article  CAS  Google Scholar 

  • Zhang X, Zhang X, Gao B, Li Z, Xia H, Li H, Li J (2014a) Effect of cadmium on growth, photosynthesis, mineral nutrition and metal accumulation of an energy crop, king grass (Pennisetum americanum × P. purpureum). Biomass Bioenergy 67:179–187

    Article  CAS  Google Scholar 

  • Zhang X, Gao B, Xia H (2014b) Effect of cadmium on growth, photosynthesis, mineral nutrition and metal accumulation of bana grass and vetiver grass. Ecotox Environ Safe 106:102–108

    Article  CAS  Google Scholar 

  • Zhang X, Xia H, Li Z, Zhuang P, Gao B (2010) Potential of four forage grasses in remediation of Cd and Zn contaminated soils. Bioresour Technol 101:2063–2066

    Article  CAS  Google Scholar 

  • Zhao FJ, Ma YB, Zhu YG, Tang Z, McGrath SP (2015) Soil contamination in China: current status and mitigation strategies. Environ Sci Technol 49:750–759

    Article  CAS  Google Scholar 

  • Zhuang P, Shu W, Li Z, Liao B, Li J, Shao J (2009) Removal of metals by sorghum plants from contaminated land. J Environ Sci-China 21:1432–1437

    Article  CAS  Google Scholar 

  • Zhuang P, Ye ZH, Lan CY, Xie ZW, Shu WS (2005) Chemically assisted phytoextraction of heavy metal contaminated soils using three plant species. Plant Soil 276:153–162

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (41301576 and U1305232), the Research Fund for the Doctoral Program of Higher Education of China (20133515120020), and Fujian Agriculture and Forestry University (xjq201416).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo Wang.

Additional information

Responsible editor: Jaco Vangronsveld

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Liu, M., Deng, Y. et al. Comparison of ammonium fertilizers, EDTA, and NTA on enhancing the uptake of cadmium by an energy plant, Napier grass (Pennisetum purpureum Schumach). J Soils Sediments 17, 2786–2796 (2017). https://doi.org/10.1007/s11368-017-1703-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-017-1703-7

Keywords

Navigation