Advertisement

Journal of Soils and Sediments

, Volume 17, Issue 10, pp 2500–2515 | Cite as

Trace element content in soil after a sediment-laden flood in northern Chile

  • Fabio CorradiniEmail author
  • Francisco Meza
  • Raúl Calderón
Soils, Sec 4 • Ecotoxicology • Research Article

Abstract

Purpose

Arid and hyper-arid zones worldwide are reservoirs of chemical compounds, among them are various trace elements. With climate change, abnormal precipitation is occurring in arid and hyper-arid mountainous zones, which in turn is increasing the displacement of trace elements from mountainous to populated areas. The objective of this study was to evaluate trace element displacement of a sediment-laden flood in the Copiapó River Basin on March 24–25, 2015.

Materials and methods

Sixty topsoil samples were taken from 20 agricultural fields. Soil organic matter content, pH, electrical conductivity, and particle size were determined according to accepted procedures in Chile. Samples were acid-digested to determine total Al, As, Cd, Cr, Cu, Fe, Hg, Mn, Mo, Ni, Pb, Se, and Zn content by flame atomic absorption spectroscopy. Hydride generation AAS was used for As and Se determination, and Hg was quantified by cold vapor AAS. Detection limits were 0.2, 0.05, 0.1, and 5.0 mg kg−1 for Cd, Hg, Se, and Mo, respectively. Correlation and principal component analyses were made, and theoretical distribution functions were fitted to each element.

Results and discussion

Metal concentration showed a strong correlation between SOM and particle size, explaining the first component from the principal component analysis. All trace elements correlated well between each other except for Mo and Se. Mo values were consistently below detection levels (<5.0 mg kg−1). Expected values for the elements were (95% of probability): 13–37 g Al kg−1, 10–50 mg As kg−1, <0.2–0.6 mg Cd kg−1, 13–25 mg Cr kg−1, 27–281 mg Cu kg−1, 27–40 g Fe kg−1, <0.05–6.5 mg Hg kg−1, 516–1.080 mg Mn kg−1, 7–24 mg Ni kg−1, 13–50 mg Pb kg−1, 0.2–0.6 mg Se kg−1, and 61–172 mg Zn kg−1. Concentrations of As, Cu, and Hg were consistently above national standards.

Conclusions

The authors conclude that the trace element contents in sediments deposited by the event are within expected values based on soil data in Chile.

Keywords

Agricultural land Atacama Desert Debris flow Floodplain sediment Trace element 

Notes

Acknowledgements

The authors thank Regina Ite, Francisco Casado, and Raúl Eguiluz for their indispensable help in sampling and laboratory analysis.

References

  1. Badilla-Ohlbaum R, Ginocchio R, Rodríguez P, Céspedes A, González S, Allen H, Lagos G (2001) Relationship between soil copper content and copper content of selected crop plants in central Chile. Environ Toxicol Chem 20:2749–2757CrossRefGoogle Scholar
  2. Barrios-Guerra CA (2004) Mercury contamination in Chile: a chronicle of problem foretold. Rev Environ Contam Toxicol 183:1–19Google Scholar
  3. Bonomelli C, Bonilla C, Valenzuela A (2003) Efecto de la fertilización fosforada sobre el contenido de cadmio en cuatro suelos de Chile. Pesq Agropec Bras 38(10):1179–1186CrossRefGoogle Scholar
  4. Calderon R, Palma P, Godoy F, Escudey M (2016) Sorption and fate of perchlorate in arid soils. Arch Agron Soil Sci 62:1437–1450CrossRefGoogle Scholar
  5. Cámara de Diputados (2011) Informe de la Comisión Investigadora sobre la situación en que se encuentran los depósitos de relaves mineros existentes en el país. Resource document. Cámara de Diputados, Chile. https://www.camara.cl/pdf.aspx?prmID=3950&prmTIPO=INFORMECOMISION. Accessed 04 July 2016
  6. Carlon, C. (Ed.) (2007). Derivation methods of soil screening values in Europe. A review and evaluation of national procedures towards harmonization. European Commission, Joint Research Centre, Ispra, EUR 22805-EN, pp 306Google Scholar
  7. Cecioni A, Pineda V (2009) Geology and geomorphology of natural hazards and human-induced disasters in Chile. In: Latrubesse EM (ed) Natural hazards and human-exacerbated disasters in Latin America. Elsevier Science pp 379–413. doi: 10.1016/S0928-2025(08)10018-9
  8. CIREN (2007) Estudio agrológico valle del Copiapó y valle del Huasco. Centro de información de recursos naturales. CIREN publications n°135. 128pGoogle Scholar
  9. Cruden DM (2013) Landslide types. In: Browsky PT (ed) Encyclopedia of natural hazards. Springer, Dordrecht, pp 615–618Google Scholar
  10. Curran JM (2013) Hotelling: Hotelling’s T-squared test and variants. R package version 1.0–2. https://CRAN.R-project.org/package=Hotelling. Accessed 10 August 2016
  11. De Gregori I, Fuentes E, Rojas M, Pinochet H, Potin-Gautier M (2003) Monitoring of copper, arsenic and antimony levels in agricultural soils impacted and non-impacted by mining activities, from three regions in Chile. J Environ Monit 5:287–295CrossRefGoogle Scholar
  12. de Vries W, Groenenberg JE, Lofts S, Tipping E, Posch M (2013) Critical loads of heavy metals for soils. In: Alloway BJ (ed) Heavy metals in soils, 3rd edn. Springer, Dordrecht, pp 211–240Google Scholar
  13. Delignette-Muller ML, Dutang C (2015) Fitdistrplus: an R package for fitting distributions. J Stat Softw 64(4):1–34CrossRefGoogle Scholar
  14. Dragović S, Mihailović N, Gajić B (2008) Heavy metals in soils: distribution, relationship with soil characteristics and radionuclides and multivariate assessment. Chemosphere 72:491–495CrossRefGoogle Scholar
  15. DTO 4 (2009) Reglamento para el manejo de lodos generados en plantas de tratamientos de aguas servidas. Ministerio Secretaría General de la Presidencia; Subsecretaría General de la Presidencia. 13 pGoogle Scholar
  16. EPA (1996) Method 3050B: acid digestion of sediments, sludges, and soils, revision 2. Resource document. Environmental Protection Agency. https://www.epa.gov/sites/production/files/2015-06/documents/epa-3050b.pdf. Accessed 10 April 2016
  17. Essington ME (2015) Soil and water chemistry, 2nd edn. CRC Press, New YorkGoogle Scholar
  18. Fox J, Weisberg S (2011) An {R} companion to applied regression, Second Edition. Thousand Oaks CA: Sage. http://socserv.socsci.mcmaster.ca/jfox/Books/Companion. Accessed 10 August 2016
  19. Ginocchio R, Carvallo G, Toro I, Bustamante E, Silva Y, Sepúlveda N (2004) Micro-spatial variation of soil metal pollution and plant recruitment near a copper smelter in Central Chile. Environ Pollut 127:343–352CrossRefGoogle Scholar
  20. González I, Neaman A, Rubio P, Cortes A (2014) Spatial distribution of copper and pH in soils affected by intensive industrial activities in Puchuncaví and Quintero, central Chile. J Soil Sci Plant Nutr 14:943–953Google Scholar
  21. Harrell FE, Dupont C et al (2016) Hmisc: Harrell miscellaneous. R package version 4.0–1. https://CRAN.R-project.org/package=Hmisc. Accessed 10 August 2016
  22. Higueras P, Oyarzun R, Oyarzún J, Maturana H, Lillo J, Morata D (2004) Environmental assessment of copper-gold-mercury mining in the Andacollo and Punitaqui districts, northern Chile. Appl Geochem 19:1855–1864CrossRefGoogle Scholar
  23. Hirzel J, León L, Castillo D, Walter I, Matus I (2016) Prospection of cadmium content in Chilean agricultural soils cultivated with durum wheat and corn and its relationship with physical and chemical properties of the soil. Academia J Agric Res 4(4):176–187Google Scholar
  24. Hu W, Dong XJ, Xu Q, Wang GH, van Asch TWJ, Hicher PY (2016) Initiation processes for run-off generated debris flows in the Wenchuan earthquake area of China. Geomorphology 253:468–477CrossRefGoogle Scholar
  25. Hungr O, McDougall S (2009) Two numerical models for landslide dynamic analysis. Comput Geosci 35:978–992CrossRefGoogle Scholar
  26. Hungr O, Leroueil S, Picarelli L (2014) The Varnes classification of landslide types, an update. Landslides 11:167–194CrossRefGoogle Scholar
  27. INDH (2015) Informe misión de observación a las comunas de Copiapó, Tierra Amarilla y Chañaral. Resource document. Instituto Nacional de Derechos Humanos, Gobierno de Chile. http://bibliotecadigital.indh.cl/bitstream/handle/123456789/883/informe-mision-copiapo.pdf?sequence=4. Accessed 04 July 2016
  28. INIA (1990) Fuentes de contaminación con residuos de plaguicidas organoclorados y metales pesados en sectores agrícolas, regiones IV a XI. Informe final. Proyecto FIA n° 1/86Google Scholar
  29. ISO 11466 International Standard (1995) Soil quality—extraction of trace elements soluble in aqua regia. International Organization for Standardization, GenèveGoogle Scholar
  30. Jogesh Babu G, Rao CR (2004) Goodness-of-fit tests when parameters are estimated. Sankhya 66(1):63–74Google Scholar
  31. Keefer DK, Moseley ME, deFrance SD (2003) A 38 000-year record of floods and debris flows in the Ilo region of southern Peru and its relation to El Niño events and great earthquakes. Palaeogeogr Palaeoclimatol Palaeoecol 194:41–77CrossRefGoogle Scholar
  32. Kitamura R, Sako K (2010) Contribution of soils and foundations to studies on rainfall-induced slope failure. Soils Found 50(6):955–964CrossRefGoogle Scholar
  33. Kooperberg C (2016) Logspline: logspline density estimation routines. R package version 2.1.9. https://CRAN.R-project.org/package=logspline. Accessed 10 August 2016
  34. Korup O, Clague JJ (2009) Natural hazards, extreme events, and mountain topography. Quat Sci Rev 28:977–990CrossRefGoogle Scholar
  35. Latrubesse EM, Baker PA, Argollo J (2009) Geomorphology of natural hazards and human-induced disasters in Bolivia. Dev Earth Surf Process 13:181–194CrossRefGoogle Scholar
  36. Lee L (2013) NADA: nondetects and data analysis for environmental data. R package version 1.5–6. https://CRAN.R-project.org/package=NADA. Accessed 10 August 2016
  37. Leybourne MI, Cameron EM (2008) Source, transport, and fate of rhenium, selenium, molybdenum, arsenic, and copper in groundwater associated with porphyry–Cu deposits, Atacama Desert, Chile. Chem Geol 247:208–228CrossRefGoogle Scholar
  38. Ministry of the Environment, Finland (2007) Government decree on the assessment of soil contamination and remediation needs (214/2007, March 1, 2007)Google Scholar
  39. Moreiras SM, Coronato A (2009) Landslide processes in Argentina. Dev Earth Surf Process 13:301–332CrossRefGoogle Scholar
  40. Muena V, González I, Neaman A (2010) Effects of liming and nitrogen fertilization on the development of Oenothera affinis in a soil affected by copper mining. J Soil Sci Plant Nutr 10:102–114Google Scholar
  41. Muñoz O, Bastias JM, Araya M, Morales A, Orellana C, Rebolledo R, Velez D (2005) Estimation of the dietary intake of cadmium, lead, mercury, and arsenic by the population of Santiago (Chile) using a Total Diet Study. Food Chem Toxicol 43:1647–1655CrossRefGoogle Scholar
  42. Muñoz JF, Fernández B, Varas E, Pastén P, Gómez D, Rengifo P, Muñoz J, Atenas M, Jofre JC (2007) Chilean water resources. In: Moreno T, Gibbons W (eds) The geology of Chile. The Geological Society, London, pp 215–230Google Scholar
  43. ODEPA (2014) Región de Atacama, información regional. Resource document. Oficina de Estudios y Politicas Agrarias, Chile. http://www.odepa.cl/wp-content/files_mf/1395695392140321_minuta_atacama.pdf. Accessed 05 August 2016
  44. Pinochet H, De Gregori I, Lobos MG, Fuentes E (1999) Selenium and copper in vegetables and fruits grown on long-term impacted soils from Valparaiso Region, Chile. Bull Environ Contam Toxicol 63:327–334CrossRefGoogle Scholar
  45. Pizarro I, Gómez-Gómez M, León J, Román D, Palacios MA (2016) Bioaccessibility and arsenic speciation in carrots, beets and quinoa from a contaminated area of Chile. Sci Total Environ 565:557–563CrossRefGoogle Scholar
  46. R Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/
  47. Sadzawka A, Carrasco MA, Grez R, Mora ML, Flores H, Neaman A (2006) Métodos recomendados para los suelos de Chile. Revisión 2006. Instituto de Investigaciones Agropecuarias, SantiagoGoogle Scholar
  48. Sancha AM, Marchetti N (2008) Total arsenic content in vegetables cultivated in different zones in Chile. In: Bundschuh J et al (eds) Natural arsenic in groundwaters of Latin America. CRS Press, p 782Google Scholar
  49. Sandoval M, Dörner J, Seguel O, Cuevas J, Rivera D (2012) Métodos de análisis físicos de suelos. Departamento de Suelos y Recursos Naturales, Universidad de Concepción. Chile, 80pGoogle Scholar
  50. Schalscha E, Ahumada I (1998) Heavy metals in rivers and soils of central Chile. Water Sci Technol 37(8):251–255Google Scholar
  51. Schoeneberger PJ, Wysocki DA, Benham EC et al (2012) Field book for describing and sampling soils, Version 3.0. Lincoln, NE: Natural Resources Conservation Service, National Soil Survey CenterGoogle Scholar
  52. Sepúlveda SA, Rebolledo S, Vargas G (2006) Recent catastrophic debris flows in Chile: geological hazard, climatic relationships and human response. Quat Int 158(1):83–95CrossRefGoogle Scholar
  53. SERNAGEOMIN (2011) Atlas de faenas mineras: Regiones de Antofagasta y Atacama. Mapas de estadísticas de faenas mineras de Chile n°7. Servicio Nacional de Geología y Minería. Resource document. http://www.sernageomin.cl/pdf/mineria/estadisticas/atlas/atlas_faenas%20Anfo_Atacama.pdf Accessed 20 September 2016
  54. Tóth G, Hermann T, Da Silva MR, Montanarella L (2016) Heavy metals in agricultural soils of the European Union with implications for food safety. Environ Int 88:299–309CrossRefGoogle Scholar
  55. Tsuchida T, Kano S, Nakagawa S, Kaibori M, Nakai S, Kitayama N (2014) Landslide and mudflow disaster in disposal site of surplus soil at Higashi-Hiroshima due to heavy rainfall in 2009. Soils Found 54(4):621–638CrossRefGoogle Scholar
  56. UNEP (2013) Environmental risks and challenges of anthropogenic metals flows and cycles. Resource document. http://orbit.dtu.dk/files/54666484/Environmental_Challenges_Metals_Full_Report.pdf. Accessed 7 Feb 2017
  57. Vargas G, Ortlieb L, Rutllant J (2000) Aluviones históricos en Antofagasta y su relación con eventos El Niño/Oscilacion del Sur. Revista Geológica de Chile 27(2):155–174Google Scholar
  58. Vargas G, Rutllant J, Ortlieb L (2006) ENSO tropical-extratropical climate teleconnections and mechanisms for Holocene debris flows along the hyperarid coast of western South America (17°-24°S). Earth Planet Sci Lett 294:467–483CrossRefGoogle Scholar
  59. Venables WN, Ripley BD (2002) Modern applied statistics with S, Fourth edn. Springer, New YorkCrossRefGoogle Scholar
  60. Villarroel L, Morales J, Miranda P, Díaz C, Arce N, Campos C (2009) Capture, quantification and characterization of the settleable particulated material on Copiapó city roofs. IDESIA 27(3):47–57CrossRefGoogle Scholar
  61. Warnes GR, Bolker B, Bonebakker L, Gentleman R, Liaw WHA, Lumley T, Maechler M, Magnusson A, Moeller S, Schwartz M, Venables B (2016) gplots: various R programming tools for plotting data. R package version 3.0.1. https://CRAN.R-project.org/package=gplots. Accessed 01 February 2017

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Instituto de Investigaciones Agropecuarias, INIA La PlatinaSantiagoChile
  2. 2.Instituto de Investigaciones Agropecuarias, INIA IntihuasiLa SerenaChile
  3. 3.Centro de Investigación en Recursos Naturales y SustentabilidadUniversidad Bernardo O’HigginsSantiagoChile

Personalised recommendations