Journal of Soils and Sediments

, Volume 17, Issue 11, pp 2677–2690 | Cite as

Modeling the sedimentary response of a large Pyrenean basin to global change

  • Albert Herrero
  • Cristina Buendía
  • Gianbattista Bussi
  • Sergi Sabater
  • Damià Vericat
  • Antoni Palau
  • Ramon J. Batalla
Transfer of Sediments and Contaminants in Catchments and Rivers

Abstract

Purpose

Erosion processes at the catchment scale control a basin’s morphology and sediment patterns in the river network. Eroded sediments are transported and deposited downstream and may cause environmental problems and relevant effects on water storage and hydropower infrastructures. Quantification of water and sediment yield is complex due to the physical processes involved and their temporal and spatial variability, especially at the light of current global change.

Materials and methods

Numerical models that use spatially distributed information constitute a useful tool for these estimates, when sufficient input data are available. In this study, we applied the hydrological and sedimentological TETIS model to determine the patterns of water and sediment yield in a large mountain catchment. Flow discharge data obtained from two gauged stations were used for calibration and validation of the hydrological sub-model. Data from two reservoir bathymetries at the outlet of the study area were used for calibration of the sedimentological sub-model. After model calibration, several scenarios of climate and land use change were simulated.

Results and discussion

Climate scenarios show a general decrease in average annual precipitation and an increase in temperature, associated with an increase in extreme rainfall events. Global change scenarios lead to a counteracting effect between the increase in sediment transport during extreme events and the decrease in sediment erosion associated with afforestation following the abandonment of agricultural land. In the case of the most extreme climate scenario combined with total catchment deforestation, the model indicates a complete siltation of the reservoir by 2050.

Conclusions

Model performance emphasizes its potential as a tool for evaluating water and sediment yield for large catchments, as well as of its usefulness for water and sediment management in light of future climate and land use change scenarios.

Keywords

Global change Hydrology Reservoir siltation River Noguera Pallaresa Sediment yield TETIS model 

Notes

Acknowledgements

This work has been supported by the Biodiversity Conservation Plan of ENDESA S.A., within the A3 project “Analysis of the effects of global change on water resources and potential ecological status of water bodies in basins of high hydropower activity (Noguera Pallaresa, Lleida, Spain)”. Damià Vericat has a Ramon y Cajal Fellowship (RYC-2010-06264) funded by the Spanish Ministry of Economy and Competiveness. We thank Endesa Generación S.A. for the support during the bathymetric surveys in 2015. Finally, we acknowledge the support from the Economy and Knowledge Department of the Catalan Government through the Consolidated Research Groups: 2014 SGR 645 (RIUS—Fluvial Dynamics Research Group) and 2014 SGR 291 (ICRA—Catalan Institute for Water Research).

References

  1. Alatorre LC, Beguería S, García-Ruiz JM (2010) Regional scale modeling of hillslope sediment delivery: a case study in the Barasona reservoir watershed (Spain) using WATEM/SEDEM. J Hydrol 391(1):109–123CrossRefGoogle Scholar
  2. Alpert P, Ben-Gai T, Baharad A, Benjamini Y, Yekutieli D, Colacino M, Diodato L, Ramis C, Homoar V, Romero R, Michaelides S, Manes A (2002) The paradoxical increase of Mediterranean extreme daily rainfall in spite of decrease in total values. Geophys Res Lett 29:1536CrossRefGoogle Scholar
  3. Baade J, Franz S, Reichel A (2012) Reservoir siltation and sediment yield in the Kruger National Park, South Africa: a first assessment. Land Degrad Dev 23(6):586–600CrossRefGoogle Scholar
  4. Bangash RF, Passuello A, Sanchez-Canales M, Terrado M, López A, Elorza FJ, Ziv G, Acuña V, Schuhmacher M (2013) Ecosystem services in Mediterranean river basin: climate change impact on water provisioning and erosion control. Sci Total Environ 458:246–255CrossRefGoogle Scholar
  5. Barrera-Escoda A, Cunillera J (2011) Climate change projections for Catalonia (NE Iberian peninsula). Part I: regional climate modeling Tethys 8:75–87Google Scholar
  6. Batalla RJ, Vericat D (2010) A review of sediment quantity issues: examples from the river Ebro and adjacent basins (northeastern Spain). Integr Environ Assess Manag 7:256–268CrossRefGoogle Scholar
  7. Batalla RJ, Vericat D (2011) An appraisal of the contemporary sediment yield in the Ebro basin. J Soils Sediments 11:1070–1081CrossRefGoogle Scholar
  8. Benestad RE (2004) Record-values, nonstationarity tests and extreme value distributions. Glob Planet Chang 44(1):11–26CrossRefGoogle Scholar
  9. Brasington J, Langham J, Rumsby B (2003) Methodological sensitivity of morphometric estimates of coarse fluvial sediment transport. Geomorphology 53(3–4):299–316CrossRefGoogle Scholar
  10. Brune RC (1953) Trap efficiency of reservoirs. Trans Geophys Union 34:407–418CrossRefGoogle Scholar
  11. Buendia C, Batalla RJ, Sabater S, Marce R (2015) Runoff trends driven by climate and afforestation in a Pyrenean basin: the effects of forest cover expansion. Land Degrad Develop 27:823–838CrossRefGoogle Scholar
  12. Buendia C, Bussi G, Tuset J, Vericat D, Sabater S, Palau A, Batalla RJ (2016a) Effects of afforestation on runoff and sediment load in an upland Mediterranean catchment. Sci Total Environ 540:144–157CrossRefGoogle Scholar
  13. Buendia C, Herrero A, Sabater S, Batalla RJ (2016b) An appraisal of the sediment yield in western Mediterranean river basins. Sci Total Environ 572:538–553CrossRefGoogle Scholar
  14. Bussi G, Rodríguez-Lloveras X, Francés F, Benito G, Sánchez-Moya Y, Sopeña A (2013) Sediment yield model implementation based on check dam infill stratigraphy in a semiarid Mediterranean catchment. Hydrol Earth Syst Sci 17:3339–3354CrossRefGoogle Scholar
  15. Bussi G, Francés F, Horel E, López-Tarazón JA, Batalla RJ (2014a) Modelling the impact of climate change on sediment yield in a highly erodible Mediterranean catchment. J Soils Sediments 14:1921–1937CrossRefGoogle Scholar
  16. Bussi G, Francés F, Montoya JJ, Julien PY (2014b) Distributed sediment yield modelling: importance of initial sediment conditions. Environ Model Softw 58:58–70. doi: 10.1016/j.envsoft.2014.04.010 CrossRefGoogle Scholar
  17. Bussi G, Dadson SJ, Whitehead PG, Prudhomme C (2016a) Modelling the future impacts of climate and land-use change on suspended sediment transport in the River Thames (UK). J Hydrol 542:357–372CrossRefGoogle Scholar
  18. Bussi G, Whitehead PG, Bowes MJ, Read DS, Prudhomme C, Dadson SJ (2016b) Impacts of climate change, land-use change and phosphorus reduction on phytoplankton in the River Thames (UK). Sci Total Environ 572:1507–1519CrossRefGoogle Scholar
  19. Charles H, Dukes JS (2009) Effects of warming and altered precipitation on plant and nutrient dynamics of a New England salt marsh. Ecol Appl 19:1758–1773CrossRefGoogle Scholar
  20. Chen J, Wu X, Finlayson BL, Webber M, Wei T, Li M, Chen Z (2014) Variability and trend in the hydrology of the Yangtze River, China: annual precipitation and runoff. J Hydrol 513:403–412CrossRefGoogle Scholar
  21. Cobo R (2008) Los sedimentos de los embalses españoles. Ingeniería del agua 15:231–241CrossRefGoogle Scholar
  22. Cuo L, Zhang Y, Gao Y, Hao Z, Cairang L (2013) The impacts of climate change and land cover/use transition on the hydrology in the upper Yellow River basin, China. J Hydrol 502:37–52CrossRefGoogle Scholar
  23. De Vente J, Verduyn R, Verstraeten G, Vanmaercke M, Poesen J (2011) Factors controlling sediment yield at the catchment scale in NW Mediterranean geoecosystems. J Soils Sediments 11:690–707CrossRefGoogle Scholar
  24. Einstein HA (1950) The bedload function for bed load transportation in open channel flows. Technical bulletin no. 1026. U.S.D.A., Soil Conservation Service, USAGoogle Scholar
  25. Engelund F, Hansen E (1967) A monograph on sediment transport in alluvial streams. Monogr Denmark Tech Univ Hydraul Lab. Teknisk Forlag, CopenhagenGoogle Scholar
  26. ESDB Ver2 (2004) The European Soil Database distribution version 2.0, European Commission and the European Soil Bureau Network, CD-ROM, EUR 19945 EN. Office for Official Publications of the European Communities, LuxembourgGoogle Scholar
  27. Francés F, Vélez JI, Vélez JJ (2007) Split-parameter structure for the automatic calibration of distributed hydrological models. J Hydrol 332:226–240CrossRefGoogle Scholar
  28. Francés F, García-Bartual R, Bussi G (2011) High return period annual maximum reservoir water level quantiles estimation using synthetic generated flood events. In: Risk analysis, dam safety, dam security and critical infrastructure management. Taylor & Francis Group, London, pp 185–190CrossRefGoogle Scholar
  29. Gallart F, Llorens P (2004) Observations on land cover changes and water resources in the headwaters of the Ebro catchment, Iberian peninsula. Phys Chem Earth, Parts A/B/C 29(11):769–773CrossRefGoogle Scholar
  30. García MH (2008) Sedimentation engineering: processes, measurements, modeling and practice. ASCE Reston, USACrossRefGoogle Scholar
  31. González-Hidalgo JC, Batalla RJ, Cerda A, de Luis M (2012) A regional analysis of the effects of largest events on soil erosion. Catena 95:85–90CrossRefGoogle Scholar
  32. González-Hidalgo JC, Batalla RJ, Cerda A (2013) Catchment size and contribution of the largest daily events to suspended sediment load on the continental scale. Catena 102:40–45CrossRefGoogle Scholar
  33. Herrera S, Gutiérrez JM, Ancell R, Pons MR, Frías MD, Fernández J (2010) Development and analysis of a 50-year high-resolution daily gridded precipitation dataset over Spain (Spain02). Int J Climatol 32:74–85CrossRefGoogle Scholar
  34. Herrera S, Fernández J, Gutiérrez JM (2015) Update of the Spain02 gridded observational dataset for EURO-CORDEX evaluation: assessing the effect of the interpolation methodology. Int J Climatol 36:900–908CrossRefGoogle Scholar
  35. Johnson B, Julien P, Molnar DK, Watson CC (2000) The two-dimensional upland erosion model CASC2D-SED. J Am Water Resour Assoc 36:31–42CrossRefGoogle Scholar
  36. Julien P (1995) Erosion and sedimentation. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  37. Kilinc M, Richardson EV (1973) Mechanics of soil erosion from overland flow generated by simulated rainfall. Hydrology paper 63. Colorado State University, Fort Collins 54 ppGoogle Scholar
  38. Lasanta T, García-Ruíz JM (1996) Erosión y recuperación de tierras en áreas marginales. 915. Instituto de Estudios Riojanos, SEG, Logroño, SpainGoogle Scholar
  39. Leopold LB, Maddock T (1953) The hydraulic geometry of stream channels and some physiographic implications. U.S. Geological Survey. Prof. paper No. 252, USAGoogle Scholar
  40. López-Moreno JI, Morán-Tejeda E, Vicente-Serrano SM, Lorenzo-Lacruz J, García-Ruiz JM (2014) Impact of climate evolution and land use changes on water yield in the Ebro basin. Hydrol Earth Syst Sci 15:311–322CrossRefGoogle Scholar
  41. López-Moreno JI, Zabalza J, Vicente-Serrano SM, Revuelto J, Gilaberte M, Azorin-Molina C, Morán-Tejeda E, García-Ruiz JM, Tague C (2014) Impact of climate and land use change on water availability and reservoir management: scenarios in the upper Aragón River, Spanish Pyrenees. Sci Total Environ 493:1222–1231CrossRefGoogle Scholar
  42. López-Tarazón JA, Batalla RJ, Vericat D, Francke T (2009) Suspended sediment transport in a highly erodible catchment: the river Isábena (southern Pyrenees). Geomorphology 109:210–221CrossRefGoogle Scholar
  43. López-Tarazón JA, Batalla RJ, Vericat D, Francke T (2012) The sediment budget of a highly dynamic mesoscale catchment: the river Isábena. Geomorphology 138:15–28CrossRefGoogle Scholar
  44. Montoya JJ (2008) Desarrollo de un modelo conceptual de producción, transporte y depósito de sedimentos. Unpublished PhD Thesis, Universidad Politécnica de Valencia, SpainGoogle Scholar
  45. Morris GL, Fan J (2008) Reservoir sedimentation handbook, 1.04 edn. McGraw-Hill Book Co., New YorkGoogle Scholar
  46. Nakicenovic N, Swart R (2000) Special report on emissions scenarios. Cambridge University Press, CambridgeGoogle Scholar
  47. Nash JE, Sutcliffe JV (1970) River flow forecastin through conceptual models—part 1—a discussion of principles. J Hydrol 10:282–290CrossRefGoogle Scholar
  48. Nearing MA, Pruski FF, O’Neill MR (2004) Expected climate change impacts on soil erosion rates: a review. J Soil Water Conserv (USA) 59:43–50Google Scholar
  49. Nunes JP, Seixas J, Pacheco NR (2008) Vulnerability of water resources, vegetation productivity and soil erosion to climate change in Mediterranean watersheds. Hydrol Process 22:3115–3134CrossRefGoogle Scholar
  50. Palau A (2002) Aspectos medioambientales de la sedimentación en embalses. Actas de la Jornada Técnica de la Sociedad Española de Grandes Presas (SEPREM), Madrid, pp 104–117Google Scholar
  51. Prudhomme C, Wilby RL, Crooks S, Kay AL, Reynard NS (2010) Scenario-neutral approach to climate change impact studies: application to flood risk. J Hydrol 390:198–209CrossRefGoogle Scholar
  52. Rodríguez-Lloveras X, Bussi G, Francés F, Rodriguez-Caballero E, Solé-Benet A, Calle M, Benito G (2015) Patterns of runoff and sediment production in response to land-use changes in an ungauged catchment. J Hydrol 531:1054–1066CrossRefGoogle Scholar
  53. Rodríguez-Lloveras X, Buytaert W, Benito G (2016) Land use can offset climate change induced increases in erosion in Mediterranean watersheds. Catena 143:244–255CrossRefGoogle Scholar
  54. Ruiz-Villanueva V, Stoffel M, Bussi G, Francés F, Bréthaut C (2015) Climate change impacts on discharges of the Rhone River in Lyon by the end of the twenty-first century: model results and implications. Reg Environ Chang 15:505–515CrossRefGoogle Scholar
  55. Sabater S, Feio MJ, Graça MAS, Muñoz I, Romaní A (2009) The Iberian rivers. In: Tockner K, Robinson C, Uhlinger U (eds) Rivers of Europe. Elsevier, The Netherlands, pp 113–150CrossRefGoogle Scholar
  56. Salazar S, Francés F, Komma J, Blume T, Francke T, Bronstert A, Blöschl G (2013) A comparative analysis of the effectiveness of flood management measures based on the concept of “retaining water in the landscape” in different European hydro-climatic regions. Nat Hazard Earth Sys 12:3287–3306CrossRefGoogle Scholar
  57. Sanz Montero ME, Cobo Rayán R, Avendaño Salas C, Gómez Montaña JL (1996) Influence of the drainage basin area on the sediment yield to Spanish reservoirs. In: Proceedings of the first European conference and trace exposition on control erosion. IECA, BarcelonaGoogle Scholar
  58. Sanz ME, Avendaño C, Cobo R (1999) Influencia de los embalses en el transporte de sedimentos hasta el río Ebro (España). Proceedings of the Congress on Hydrological and geochemical processes in large-scale river basins. HIBAM, ShahinGoogle Scholar
  59. Saxton KE, Rawls WJ (2006) Soil water characteristic estimates by texture and organic matter for hydrologic solutions. Soil Sci Soc Am J 70:1569–1578CrossRefGoogle Scholar
  60. Serpa D, Nunes JP, Santos J, Sampaio E, Jacinto R, Veiga S, Lima JC, Moreira M, Corte-Real J, Keizer JJ, Abrantes N (2015) Impacts of climate and land use changes on the hydrological and erosion processes of two contrasting Mediterranean catchments. Sci Total Environ 538:64–77CrossRefGoogle Scholar
  61. Tuset J, Vericat D, Batalla RJ (2016) Rainfall, runoff and sediment transport in a Mediterranean mountainous catchment. Sci Total Environ 540:114–132CrossRefGoogle Scholar
  62. Van Rompaey A, Vieillefont V, Jones RJA, Montanarella L, Verstraeten G, Bazzoffi P, Dostal T, Krasa J, de Vente J, Poesen J (2003) Validation of soil erosion estimates at European scale. European Soil Bureau Research report No13 EUR 20827 EN. Office for Official Publications of the European Communities, LuxembourgGoogle Scholar
  63. Vélez JJ, Puricelli M, López Unzu F, Francés F (2009) Parameter extrapolation to ungauged basins with a hydrological distributed model in a regional framework. Hydrol Earth Syst Sci 13:229–246CrossRefGoogle Scholar
  64. Verstraeten G, Poesen J, de Vente J, Koninckx X (2003) Sediment yield variability in Spain: a quantitative and semiqualitative analysis using reservoir sedimentation rates. Geomorphology 50:327–348CrossRefGoogle Scholar
  65. Wischmeier WH, Johnson CB, Cross BV (1971) Soil credibility nomograph for farmland and construction sites. J Soil Water Conserv 26:189–193Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Albert Herrero
    • 1
    • 2
  • Cristina Buendía
    • 1
    • 2
  • Gianbattista Bussi
    • 3
  • Sergi Sabater
    • 1
  • Damià Vericat
    • 2
    • 4
  • Antoni Palau
    • 2
  • Ramon J. Batalla
    • 1
    • 2
    • 5
  1. 1.Catalan Institute for Water ResearchGironaSpain
  2. 2.Fluvial Dynamics Research Group (RIUS)University of LleidaLleidaSpain
  3. 3.School of Geography and the EnvironmentUniversity of OxfordOxfordUK
  4. 4.Forest Science Centre of CataloniaSolsonaSpain
  5. 5.Faculty of Forest Sciences and Natural ResourcesAustral University of ChileValdiviaChile

Personalised recommendations